• Title/Summary/Keyword: Pure Ti

Search Result 597, Processing Time 0.029 seconds

A Study on the Hydrogen treatment of It and Ti-pd Alloy (티타늄 및 티나늄-팔라듐 합금의 수소처리에 관한 연구)

  • Cha, Sung-Soo
    • Journal of Technologic Dentistry
    • /
    • v.15 no.1
    • /
    • pp.5-25
    • /
    • 1993
  • Effects of hydrogenation on microstructure and mechanical properties of pure Ti and Ti-0.15Pd alloy have been studied by means of optical microscopy, differential scanning calorimeter(DSC), Xray diffraction and micro vicker's hardness test. Grain size of pure Ti and Ti-0.15Pd alloy decresed largely by hydrogenation finer than that of pure Ti and the grain size refinement was evedent in Ti-0.15Pd alloy than that in pure Ti. Ti-.015Pd alloy carried out solution treatment at 950$^{\circ}C$, the transformation of $\alpha$' martensite was occured. The amount of Hydrogen absorption in Ti-.015Pd alloy was higher than that in pure Ti. Decomposition of hydride in pure titanium and Ti-0.15Pd alloy increased largely by hydrogenation, and micro vicker's hardness of Ti-.015Pd alloy was largely than that of pure Ti by 30% after hydrogenation. The micro vicker's hardness of Ti-0.15Pd alloy after solution treatment and dehydrogenation were higher at $\beta$ phase ranger(950$^{\circ}C$) than that phase range(750$^{\circ}C$).

  • PDF

Electrochemical Corrosion Characteristics of the Intermetallic Compound NiTi from Pure Metals (금속간 화합물 NiTi와 순금속 니켈 및 티타늄의 전기화학적 부식 특성)

  • Lee, Kyu Hwan;Shin, Myung Chul
    • Analytical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.97-101
    • /
    • 1992
  • Potentiodynamic corrosion tests were conducted to know the corrosion characteristics of the NiTi intermetallic compound composed of pure Ni and Ti in artificial saline. Tafel extrapolation and linear polarization technique show similar results. Corrosion current Icorr and corrosion rate was increased in the order of NiTi

  • PDF

고집적회로에서 TiN/Ti Diffusion Barrier의 열처리에 따른 계면반응 및 구조변화에 대한 연구

  • Yu, Seong-Yong;Choi, Jin-Seog;Paek, Su-Hyon;Oh, Jae-Eung
    • ETRI Journal
    • /
    • v.13 no.4
    • /
    • pp.58-69
    • /
    • 1991
  • 고집적회로에서 A1 금속공정의 diffusion barrier로 널리 사용되는 titanium nitride의 성질을 조사하였다. 실제 회로 구조의 열적 안정성을 관찰하기 위하여 준비된 TiN/Ti다층 barrier를 $600^{\circ}C$까지 열처리하여 x-ray photoelectron spectroscopy (XPS), cross-sectional transmission electron microscopy(XTEM) 등으로 분석하였다. 열처리 온도가 증가됨에 따라 oxygen은 TiN 층의 표면과 pure-Ti 층에 pile up 된다. TiN 층의 표면에서는 $600^{\circ}C$열처리시 TiN이 분해되어 완전히 $TiO_2$가 형성되며, TiN 층 내에서는 oxygen 함량은 열처리 온도의 증가에 따라 커지고 이때 형성되는 Ti-oxide는 $TiO_2$ 보다 TiO, $Ti_2$$O_3$ 상태로 존재하게 된다. Pure-Ti 층은 열처리시 두개의 층으로 나누어 지는 데, 표면에서 침투하는 oxygen과 pure-Ti이 반응하여 Ti-oxide 층이 생기며 실리콘 기판과의 반응으로 Ti-silicide를 형성한다. $600^{\circ}C$에서 모든 Ti 층이 반응으로 소모되고 열적 stress, Ti-silicide의 grain growth, oxygen의 침입으로 TiN 층에 blistering이 발생한다.

  • PDF

Sintering Behaviors of ITO Ceramics with Additions of TiO$_2$ (TiO$_2$첨가에 따른 ITO 세라믹스의 소결 거동)

  • 정성경;김봉철;장세홍;김정주
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.4
    • /
    • pp.347-354
    • /
    • 1998
  • Densification and grain growth behaviors of ITO ceramics were investigated as a function of TiO2 ad-ditions. TiO2 addition led to inhibition of the grain growth and promotion of the densification of ITO ceram-ics. From the microstructure observation it was found that the crack-like voids which were formed in pure ITO specimens decreased with increase of TiO2 additon. The grain growth exponent(n) was measur-ed to be 4 for pure ITO 3 for TiO2-doped ITO specimens respectively. It was supposed that the grain boun-dary migration of pure ITO ceramics was controlled by the pores which were moved by surface diffusion. On the contrary the grain boundary migration of TiO2-doped ITO specimens was depressed by solute drag effect. The activation energies for grain growth were measured to be 1013 kJ/mol for pure ITO ceramics and 460kJ/mol for TiO2-doped ITO specimens respectively.

  • PDF

TiO2/Carbon Composites Prepared from Rice Husk and the Removal of Bisphenol A in Photocatalytic Liquid System

  • Kim, Ji-Yeon;Kwak, Byeong-Sub;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.344-350
    • /
    • 2010
  • The improved photocatalytic performance of a carbon/$TiO_2$ composite was studied for the Bisphenol A (BPA) decomposition. Titanium tetraisopropoxide (TTIP) and a rice husk from Korea were heterogeneously mixed as the titanium and carbon sources, respectively, for 3 h at room temperature, and then thermally treated at $600^{\circ}C$ for 1 h in $H_2$ gas. The transmission electron microscopy (TEM) images revealed that the bulk carbon partially covered the $TiO_2$ particles, and the amount that was covered increased with the addition of the rice husk. The acquired carbon/$TiO_2$ composite exhibited an anatase structure and a novel peak at $2{\theta}=32^{\circ}$, which was assigned to bulk carbon. The specific surface area was significantly enhanced to 123~164 $m^2/g$ in the carbon/$TiO_2$ composite, compared to $32.43m^2/g$ for the pure $TiO_2$. The X-ray photoelectron spectroscopy (XPS) results showed that the Ti-O bond was weaker in the carbon/$TiO_2$ composite than in the pure $TiO_2$, resulting in an easier electron transition from the Ti valence band to the conduction band. The carbon/$TiO_2$ composite absorbed over the whole UV-visible range, whereas the absorption band in the pure$TiO_2$ was only observed in the UV range. These results agreed well with an electrostatic force microscopy (EFM) study that showed that the electrons were rapidly transferred to the surface of the carbon/$TiO_2$ composite compared to the pure $TiO_2$. The photocatalytic performance of the BPA removal was optimized at a Ti:C ratio of 9.5:0.5, and this photocatalytic composite completely decomposed 10.0 ppm BPA after 210 min, whereas the pure $TiO_2$ achieved no more than 50% decomposition under any conditions.

Surface Characteristics of Titanium/Hydroxyapatite Double Layered Coating on Orthopedic PEEK by Magnetron Sputtering System (마그네트론 스퍼터링 시스템을 이용한 정형외과용 PEEK의 타이타늄/하이드록시아파타이트 이중 코팅층의 표면 특성 분석)

  • Kang, Kwan-Su;Jung, Tae-Gon;Yang, Jae-Woong;Woo, Su-Heon;Park, Tea-Hyun;Jeong, Yong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.3
    • /
    • pp.164-171
    • /
    • 2018
  • In this study, we have fabricated pure titanium (Ti)/hydroxyapatite (HA) double layer coating on medical grade PEEK from magnetron sputtering system, an investigation was performed whether the surface can be had more improve bio-active for orthopedi/dental applications than that of non-coated one. Pure Ti and HA coating layer were obtained by a radio-frequency and direct current power magnetron sputtering system. The microstructures surface, mechanical properties and wettability of the pure Ti/HA double layer deposited on the PEEK were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), nano-indentation, and contact angle test. According to the EDS and XRD results, the composition and crystal structure of pure Ti and HA coated surface were verified. The elastic modulus and hardness value were increased by pure Ti and HA coating, and the pure Ti/HA double layer coating surface has the highest value. The contact angle showed higher value for pure Ti/HA double layered coating specimens than that of non-coated (PEEK) surface.

Photodegradation of Volatile Organic Compound (VOC) Through Pure TiO2 and V-Doped TiO2 Coated Glasses

  • Moon, Jiyeon;Kim, Seonmin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.425.2-425.2
    • /
    • 2014
  • $TiO_2$ possesses great photocatalytic properties but absorbs only UV light owing to high band gap energy (Eg = 3.2 eV). By narrowing the band gap through doping a metal ion, the photocatalytic activity can be enhanced in condition of the light of a higher than 365 nm wavelength. Main purpose for this study is to evaluate the activities of metal doped $TiO_2$ for degrading the volatile organic compounds (VOCs); p-xylene is chosen in the VOC removal test. Vanadium is selected in this study because an ionic radius of vanadium is almost the same as titanium ion and vanadium can be easily doped into $TiO_2$. V-doped $TiO_2$ was synthesized by sol-gel methods and compared with pure $TiO_2$. Pure TiO2 powder and V-doped $TiO_2$ powder were coated on glasses by spray coating method. UV-Visible spectrophotometer was used for the measurement of the band gap changes. VOC concentration degradation level was tested with using various UV light sources in an enclosed chamber. Catalytic activities of prepared samples were evaluated based on the experimental results and compared with coated pure $TiO_2$ sample.

  • PDF

Corrosion Behavior of Ti-Pd System Alloys by Microstructural changes (Ti-Pd계 합금의 미세조직변화에 따른 부식거동)

  • Cha, Sung-Soo;Kwak, Dong-Ju;Nam, Sang-Yong
    • Journal of Technologic Dentistry
    • /
    • v.30 no.2
    • /
    • pp.9-16
    • /
    • 2008
  • The surface microstructural changes, mechanical properties and corrosion resistance of Ti-Pd alloys for dental biomaterials have been investigated. Ti, Ti-Pd alloys were melted in arc furnace and the corrosion resistance of Ti-Pd alloys was evaluated by anodic polarization test. The surface microstructural changes and mechanical properties of Ti-Pd alloys were analysed by scanning electron microscope and Vickers micro-hardness tester. The vickers hardnees of pure Ti improved by addition of Pd but Ti-25Pd alloy showed decreasing compared with Ti-15Pd. And anodic polarization and potentiostatic test were conducted in 5% HCl to quantify the resistance to corrosion with the addition of Pd, There was no significant difference in corrosion resistance between pure Ti, Ti-5Pd and Ti-15Pd alloy. However, Ti-25Pd alloy showed decreasing compared with pure Ti in corrosion resistance. From these results, it was concluded that newly formulated Ti-15Pd experimental alloy have adequate hardness and high corrosion resistance, and this alloy is promising candidate for a successful dental casting alloy.

  • PDF

Photocatalytic Decomposition of Gaseous Acetaldehyde by Metal Loaded $TiO_2$ with Ozonation

  • Cho, Ki-Chul;Yeo, Hyun-Gu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.E1
    • /
    • pp.19-26
    • /
    • 2006
  • The decomposition of gaseous $CH_3CHO$ was investigated by metal loaded $TiO_2$ (pure $TiO_2,\;Pt/TiO_2,\;Pd/TiO_2,\;Mn/TiO_2\;and\;Ag/TiO_2$) with $UV/TiO_2$ process and $UV/TiO_2/O_3$ process at room temperature and atmospheric pressure. Metal loaded $TiO_2$ was prepared by photodeposition. Decomposition of $CH_3CHO$ was carried out in a flow-type photochemical reaction system using three 10W black light lamps ($300{\sim}400nm$) as a light source. The experimental results showed that the degradation rate of $CH_3CHO$ was increased with Pt and Ag on $TiO_2$ compared to pure $TiO_2$, but decreased with depositing Pd and Mn on pure $TiO_2$. The considerable increase in the degradation efficiency of the $CH_3CHO$ was found by a combination of photocatalysis and ozonation as compared to only by ozonation or photocatalysis. Loading of Pt on $TiO_2$ promoted conversion of gaseous ozone. The degradation rate of gaseous $CH_3CHO$ decreased with an increase of water vapor in the feed stream for the both $UV/TiO_2\;and\;UV/TiO_2/O_3$ processes. The pure $TiO_2$ was more affected by the water vapor than Pt loaded $TiO_2$.

Oxidation Properties and Biocompatibility of Ti-8wt.%Ta-8wt.%Nb Alloy (Ti-8wt.%Ta-3wt.%Nb합금의 산화특성 및 생체안정성)

  • Lee Doh-Jae;Lee Kyung-Ku;Park Bum-Su;Lee Kwang-Min;Park Sang-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.1
    • /
    • pp.43-48
    • /
    • 2006
  • The oxidation behavior and Biocompatibility of pure Ti and Ti-8Ta-3Nb alloy were studied in dry air atmosphere. The specimens showed that Ti-8Ta-3Nb alloy had higher oxidation resistance than pure Ti at $650^{\circ}C$. Cytotoxicity test also revealed that moderate oxidation treatment lower cell toxicity and Ti-8Ta-3Nb alloy showed better results compared with pure Ti. The weight gains during the oxidation increase rapidly at temperature above $600^{\circ}C$.