• Title/Summary/Keyword: Pure Potential

Search Result 448, Processing Time 0.026 seconds

The Task of the Translator: Walter Benjamin and Cultural Translation (번역자의 책무-발터 벤야민과 문화번역)

  • Yoon, Joewon
    • Journal of English Language & Literature
    • /
    • v.57 no.2
    • /
    • pp.217-235
    • /
    • 2011
  • On recognizing the significance of Walter Benjamin's "The Task of a Translator" in recent discourses of postcolonial cultural translation, this essay examines the creative postcolonialist appropriations of Benjamin's theory of translation and their political implications. In an effort to dismantle the imperialist political hierarchy between the West and the non-West, modernity and its "primitive" others, which has been the operative premise of the traditional translation studies and anthropology, newly emergent discourses of cultural translation actively adopts Benjamin's notion of translation that does not prioritize the original text's claim on authenticity. Benjamin theorizes each text-translation as well as the original-as an incomplete representation of the pure language. Eschewing formalistic views propounded by deconstructionist critics like Paul de Man, who tend to regard Benjamin's notion of the untranslatable purely in terms of the failure inherent in the language system per se, such postcolonialist critics as Tejaswini Niranjana, Rey Chow, and Homi Bhabha, each in his/her unique way, recuperate the significatory potential of historicity embedded in Benjamin's text. Their further appropriation of the concept of the "untranslatable" depends on a radically political turn that, instead of focusing on the failure of translation, salvages historical as well as cultural potentiality that lies between disparate cultural entities, signifying differences, or disjunctures, that do not easily render themselves to existing systems of representation. It may therefore be concluded that postcolonial discourses on cultural translation of Niranhana, Chow, and Bhabha, inspired by Benjamin, each translate the latter's theory into highly politicized understandings of translation, and this leads to an extensive rethinking of the act of translation itself to include all forms of cultural exchange and communicative activities between cultures. The disjunctures between these discourses and Benjamin's text, in that sense, enable them to form a sort of theoretical constellation, which aspires to an impossible yet necessary utopian ideal of critical thinking.

Preparation and Refinement Behavior of (Hf-Ti-Ta-Zr-Nb)C High-Entropy Carbide Powders by Ultra High Energy Ball Milling Process (초고에너지 볼 밀링공정에 의한 (Hf-Ti-Ta-Zr-Nb)C 고엔트로피 카바이드 분말 제조 및 미세화 거동)

  • Song, Junwoo;Han, Junhee;Kim, Song-Yi;Seok, Jinwoo;Kim, Hyoseop
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.34-40
    • /
    • 2022
  • Recently, high-entropy carbides have attracted considerable attention owing to their excellent physical and chemical properties such as high hardness, fracture toughness, and conductivity. However, as an emerging class of novel materials, the synthesis methods, performance, and applications of high-entropy carbides have ample scope for further development. In this study, equiatomic (Hf-Ti-Ta-Zr-Nb)C high-entropy carbide powders have been prepared by an ultrahigh-energy ball-milling (UHEBM) process with different milling times (1, 5, 15, 30, and 60 min). Further, their refinement behavior and high-entropy synthesis potential have been investigated. With an increase in the milling time, the particle size rapidly reduces (under sub-micrometer size) and homogeneous mixing of the prepared powder is observed. The distortions in the crystal lattice, which occur as a result of the refinement process and the multicomponent effect, are found to improve the sintering, thereby notably enhancing the formation of a single-phase solid solution (high-entropy). Herein, we present a procedure for the bulk synthesis of highly pure, dense, and uniform FCC single-phase (Fm3m crystal structure) (Hf-Ti-Ta-Zr-Nb)C high-entropy carbide using a milling time of 60 min and a sintering temperature of 1,600℃.

Synthesis, characterization and potential applications of Ag@ZnO nanocomposites with S@g-C3N4

  • Ahmad, Naveed;Javed, Mohsin;Qamar, Muhammad A.;Kiran, Umbreen;Shahid, Sammia;Akbar, Muhammad B.;Sher, Mudassar;Amjad, Adnan
    • Advances in materials Research
    • /
    • v.11 no.3
    • /
    • pp.225-235
    • /
    • 2022
  • It includes the synthesis of pristine ZnO nanoparticles and a series of Ag-doped zinc oxide nanoparticles was carried out by reflux method by varying the amount of silver (1, 3, 5, 7 and 9% by mol.). The morphology of these nanoparticles was investigated by SEM, XRD and FT-IR techniques. These techniques show that synthesized particles are homogenous spherical nanoparticles having an average particle size of about 50-100 nm along with some agglomeration. The photocatalytic activity of the ZnO nanoparticles and Ag doped ZnO nanoparticles were investigated via photodegradation of methylene blue (MB) as a standard dye. The data from the photocatalytic activity of these nanoparticles show that 7% Ag-doped ZnO nanoparticles exhibit much enhanced photocatalytic activity as compared to pristine ZnO nanoparticles and other percentages of Ag-doped ZnO nanoparticles. Furthermore, 7% Ag-doped ZnO was made composites with sulfur-doped graphitic carbon nitride by physical mixing method and a series of nanocomposites were made (3.5, 7.5, 25, 50, 75% by weight). It was observed that the 25% composites exhibited better photocatalytic performance than pristine S-g-C 3 N 4 and pure 7% Ag-doped ZnO. Tauc's plot also supports the photodegradation results.

Effect of post-treatment routes on the performance of PVDF-TEOS hollow fiber membranes

  • Shadia R. Tewfik;Mohamed H. Sorour;Hayam F. Shaalan;Heba A. Hani;Abdelghani G. Abulnour;Marwa M. El Sayed;Yomna O. Mostafa;Mahmoud A. Eltoukhy
    • Membrane and Water Treatment
    • /
    • v.14 no.2
    • /
    • pp.85-93
    • /
    • 2023
  • Membrane separation is widely used for several applications such as water treatment, membrane reactors and climate change. Cross-linked organic-inorganic hybrid polyvinylidene fluoride (PVDF) / Tetraethyl orthosilicate (TEOS) was adopted for the preparation of optimized hollow membrane (HFM) for membrane distillation or other low pressure separators for mechanical properties and permeability under varying pretreatment schemes. HFMs were prepared on semi-pilot membrane fabrication system. Novel adopted post-treatment schemes involved soaking in glycerol, magnesium sulphate (MgSO4), sodium hypochlorite (NaOCl), and isopropanol for different durations. All fibers were characterized for morphology using a scanning electron microscope (SEM), surface roughness using atomic force microscope (AFM), elemental composition by examining Energy Dispersive Spectroscopy (EDS), water contact angle (CA°) and porosity. The performance of the fibers was evaluated for pure water permeation flux (PWF). Post-treatment with MgSO4 gave the highest both tensile modulus and flux. Assessment of properties and performance revealed comparable results with other organic-inorganic separators, HF or flat. In spite of few reported data on post treatment using MgSO4 in presence of TEOS, this proves the potential of low cost treatment without negative impact on other membrane properties. The flux is also comparable with hypochlorite which manifests substantial precaution requirements in actual industrial use.The relatively high values of flux/bar for sample treated with TEOS, post treated with MgSO4 and hypochlorite are 88 and 82 LMH/bar respectively.

Of Scent and Sensibility: Embodied Ways of Seeing in Southeast Asian Cultures

  • Ly, Boreth
    • SUVANNABHUMI
    • /
    • v.10 no.1
    • /
    • pp.63-91
    • /
    • 2018
  • One of the goals of this article is to continue the momentum begun by emerging scholarship on theory and practice of writing about visual culture of and in Southeast Asia. I hope to offer culturally sensitive and embodied ways of looking at images and objects as sites/sights of cultural knowledge as further theoretical intervention. The argument put forward in my essay is three-fold: first, I critique the prevailing logocentric approach in the field of Southeast Asian Studies and I argue that in a postcolonial, global, and transnational period, it is important to be inclusive of other objects as sites/sights of social, political and cultural analysis beyond written and oral texts. Second, I argue that although it has its own political and theoretical problems, the evolving field of Visual Studies as it is practiced in the United States is one of many ways to decolonize the prevailing logocentric approach to Southeast Asian Studies. Third, I argue that if one reads these Euro-American derived theories of vision and visuality through the lens of what Walter Mignolo calls "colonial difference(s)," then Visual Studies as an evolving field has the potential to offer more nuanced local ways of looking at and understanding objects, vision, and visuality. Last, I point out that unlike in the West where there is an understanding of pure, objective and empirical vision, local Southeast Asian perspectives on objects and visions are more embodied and multi-sensorial. I argue that if one is ethically mindful of the local cultural ways of seeing and knowing objects, then the evolving field of Visual Studies offers a much-needed intervention to the privileged, lingering logocentric approach to Southeast Asian Studies. Moreover, these alternative methods might help to decolonize method and theory in academic disciplines that were invented during the colonial period.

  • PDF

Synergistic Effect of Sulfonated Poly(Ether Ether Ketone)/Strontium Zirconate Perovskite Nanofiber-Based Novel Electrospun Composite Membranes for Fuel Cell Applications (연료전지용 술폰화된 폴리(이써 이써 케톤)/스트론튬 지르코네이트 페로브스카이트 나노섬유 기반 신규 전기방사 복합막의 시너지 효과)

  • SELVAKUMAR, KANAKARAJ;KIM, AE RHAN;YOO, DONG JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.2
    • /
    • pp.164-175
    • /
    • 2022
  • In this work, sulfonated poly (ether ether ketone) (SPEEK) composite membranes including strontium zirconate (SrZrO3) were fabricated by the electrospinning method. Fourier-transform infrared spectroscopic analysis and X-ray diffraction analysis were used to identify the chemical structure and the crystallinity of SrZrO3 and electrospun composite membranes. The thermal stability of the pure SPEEK and SPEEK/SrZrO3 electrospun composite membranes were investigated by using thermogravimetric analysis. The physicochemical properties and proton conductivity were enhanced with the addition of different weight ratio of SrZrO3 nanofiller (2, 4 and 6 wt%) in SPEEK polymer. The optimized SPEEK/SrZrO3-4 electrospun membrane containing 4 wt% of SrZrO3 showed a high proton conductivity compared to other electrospun SPEEK/SrZrO3 composite membranes. The results indicate that electrospun composite membranes incorporating these perovskite nanofillers should be explored as potential candidates for use in proton exchange membrane fuel cells.

Synthesis of Ce-doped In2O3 nanoparticles via a microwave-assisted hydrothermal pathway and their application as an ultrafast breath acetone sensor

  • Byeong-Hun Yu;Sung Do Yun;Chan Woong Na;Ji-Wook Yoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.393-400
    • /
    • 2023
  • Acetone, a metabolite detected from the exhaled breath of people doing a diet, can be used for non-invasive monitoring of diet efficiency. Thus, gas sensors with rapid response and recovery characteristics to acetone need to be developed. Herein, we report ultrafast acetone sensors using Ce-doped In2O3 nanoparticles prepared by the one-pot microwave-assisted hydrothermal method. The pure In2O3 sensor shows a high response and fast response time (τres = 6 s) upon exposure to 2 ppm acetone at 300 ℃, while exhibiting a relatively sluggish recovery speed (τrecov = 1129 s). When 20 wt% Ce is doped, the τrecov of the sensor significantly decreased to 45 s withholding the fast-responding characteristic (τres = 6 s). In addition, the acetone response (resistance ratio, S) of the sensor is as high as 5.8, sufficiently high to detect breath acetone. Moreover, the sensor shows similar acetone sensing characteristics even under a highly humid condition (relative humidity of 60%) in terms of τres (6 s), τrecov (47 s), and S (4.7), demonstrating its high potential in real applications. The excellent acetone sensing characteristics of Ce-doped In2O3 nanoparticles are discussed in terms of their size, composition, phase, and oxygen adsorption on the sensing surface.

Prognostic Analysis of Stage I Non-Small Cell Lung Cancer Abutting Adjacent Structures on Preoperative Computed Tomography

  • Soohwan Choi;Sun Kyun Ro;Seok Whan Moon
    • Journal of Chest Surgery
    • /
    • v.57 no.2
    • /
    • pp.136-144
    • /
    • 2024
  • Background: Early non-small cell lung cancer (NSCLC) that abuts adjacent structures requires careful evaluation due to its potential impact on postoperative outcomes and prognosis. We examined stage I NSCLC with invasion into adjacent structures, focusing on the prognostic implications after curative surgical resection. Methods: We retrospectively analyzed the records of 796 patients who underwent curative surgical resection for pathologic stage IA/IB NSCLC (i.e., visceral pleural invasion only) at a single center from 2008 to 2017. Patients were classified based on tumor abutment and then reclassified by the presence of visceral pleural invasion. Clinical characteristics, pathological features, and survival rates were compared. Results: The study included 181 patients with abutting NSCLC (22.7% of all participants) and 615 with non-abutting tumors (77.3%). Those with tumor abutment exhibited higher rates of non-adenocarcinoma (26.5% vs. 9.9%, p<0.01) and visceral/lymphatic/vascular invasion (30.4%/33.1%/12.7% vs. 8.5%/22.4%/5.7%, respectively; p<0.01) compared to those without abutment. Multivariable analysis identified lymphatic invasion and male sex as risk factors for overall survival (OS) and disease-free survival (DFS) in stage I NSCLC measuring 3 cm or smaller. Age, smoking history, vascular invasion, and recurrence emerged as risk factors for OS, whereas the presence of non-pure ground-glass opacity was a risk factor for DFS. Conclusion: NSCLC lesions 3 cm or smaller that abut adjacent structures present higher rates of various risk factors than non-abutting lesions, necessitating evaluation of tumor invasion into adjacent structures and lymph node metastasis. In isolation, however, the presence of tumor abutment without visceral pleural invasion does not constitute a risk factor.

Electrochemical Characteristics of Zn and Si Ion-doped HA Films on Ti-6Al-4V by PEO Treatment

  • Lim, Sang-Gyu;Hwang, In-Jo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.199-199
    • /
    • 2016
  • Commercially pure titanium (cp-Ti) and Ti alloys (typically Ti-6Al-4V) display excellent corrosion resistance and biocompatibility. Although the chemical composition and topography are considered important, the mechanical properties of the material and the loading conditions in the host have, conventionally. Ti and its alloys are not bioactive. Therefore, they do not chemically bond to the bone, whereas they physically bond with bone tissue. The electrochemical deposition process provides an effective surface for biocompatibility because large surface area can be served to cell proliferation. Electrochemical deposition method is an attractive technique for the deposition of hydroxyapatite (HAp). However, the adhesions of these coatings to the Ti surface needs to be improved for clinical used. Plasma electrolyte oxidation (PEO) enables control in the chemical com position, porous structure, and thickness of the $TiO_2$ layer on Ti surface. In addition, previous studies h ave concluded that the presence of $Ca^{+2}$ and ${PO_4}^{3-}$ ion coating on porous $TiO_2$ surface induced adhesion strength between HAp and Ti surface during electrochemical deposition. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation, and is also the most abundant trace element in bone. The objective of this work was to study electrochemical characteristcs of Zn and Si coating on Ti-6Al-4V by PEO treatment. The coating process involves two steps: 1) formation of porous $TiO_2$ on Ti-6Al-4V at high potential. A pulsed DC power supply was employed. 2) Electrochemical tests were carried out using potentiodynamic and AC impedance methoeds. The morphology, the chemical composition, and the micro-structure an alysis of the sample were examined using FE-SEM, EDS, and XRD. The enhancements of the HAp forming ability arise from $Si/Zn-TiO_2$ surface, which has formed the reduction of the Si/Zn ions. The promising results successfully demonstrate the immense potential of $Si/Zn-TiO_2$ coatings in dental and biomaterials applications.

  • PDF

Surface Morphology of PEO-treated Ti-6Al-4V Alloy after Anodic Titanium Oxide Treatment (ATO 처리후, 플라즈마 전해 산화 처리된 Ti-6Al-4V 합금의 표면 형태)

  • Kim, Seung-Pyo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.75-75
    • /
    • 2018
  • Commercially pure titanium (CP-Ti) and Ti-6Al-4V alloys have been widely used in implant materials such as dental and orthopedic implants due to their corrosion resistance, biocompatibility, and good mechanical properties. However, surface modification of titanium and titanium alloys is necessary to improve osseointegration between implant surface and bone. Especially, when titanium oxide nanotubes are formed on the surface of titanium alloy, cell adhesion is greatly improved. In addition, plasma electrolytic oxide (PEO) coatings have a good safety for osseointegration and can easily and quickly form coatings of uniform thickness with various pore sizes. Recently, the effects of bone element such as magnesium, zinc, strontium, silicon, and manganese for bone regeneration are researching in dental implant field. The purpose of this study was researched on the surface morphology of PEO-treated Ti-6Al-4V alloy after anodic titanium oxide treatmentusing various instruments. Ti-6Al-4V ELI disks were used as specimens for nanotube formation and PEO-treatment. The solution for the nanotube formation experiment was 1 M $H_3PO_4$ + 0.8 wt. % NaF electrolyte was used. The applied potential was 30V for 1 hours. The PEO treatment was performed after removing the nanotubes by ultrasonics for 10 minutes. The PEO treatment after removal of the nanotubes was carried out in the $Ca(CH_3)_2{\cdot}H_2O+(CH_3COO)_2Mg{\cdot}4H_2O+Mn(CH_3COO)_2{\cdot}4H_2O+Zn(CH_3CO_2)_2Zn{\cdot}2H_2O+Sr(CH_2COO)_2{\cdot}0.5H_2O+C_3H_7CaO_6P$ and $Na_2SiO_3{\cdot}9H_2O$ electrolytes. And the PEO-treatment time and potential were 3 minutes at 280V. The morphology changes of the coatings on Ti-6Al-4V alloy surface were observed using FE-SEM, EDS, XRD, AFM, and scratch tester. The morphology of PEO-treated surface in 5 ion coating solution after nanotube removal showed formation or nano-sized mesh and micro-sized pores.

  • PDF