• Title/Summary/Keyword: Pure Potential

Search Result 448, Processing Time 0.024 seconds

Synthesis of Graphene on Hexagonal Boron Nitride by Low Pressure Chemical Vapor

  • Han, Jae-Hyun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.391-392
    • /
    • 2012
  • Graphene is a perfectly two-dimensional (2D) atomic crystal which consists of sp2 bonded carbon atoms like a honeycomb lattice. With its unique structure, graphene provides outstanding electrical, mechanical, and optical properties, thus enabling wide variety of applications including a strong potential to extend the technology beyond the conventional Si based electronic materials. Currently, the widespread application for electrostatically switchable devices is limited by its characteristic of zero-energy gap and complex process in its synthesis. Several groups have investigated nanoribbon, strained, or nanomeshed graphenes to induce a band gap. Among various techniques to synthesize graphene, chemical vapor deposition (CVD) is suited to make relatively large scale growth of graphene layers. Direct growth of graphene on hexagonal boron nitride (h-BN) using CVD has gained much attention as the atomically smooth surface, relatively small lattice mismatch (~1.7%) of h-BN provides good quality graphene with high mobility. In addition, induced band gap of graphene on h-BN has been demonstrated to a meaningful value about ~0.5 eV.[1] In this paper, we report the synthesis of grpahene / h-BN bilayer in a chemical vapor deposition (CVD) process by controlling the gas flux ratio and deposition rate with temperature. The h-BN (99.99%) substrate, pure Ar as carrier gas, and $CH_4$ are used to grow graphene. The number of graphene layer grown on the h-BN tends to be proportional to growth time and $CH_4$ gas flow rate. Epitaxially grown graphene on h-BN are characterized by scanning electron microscopy, atomic force microscopy, and Raman spectroscopy.

  • PDF

Facile Synthesis of Co3O4/Mildly Oxidized Multiwalled Carbon Nanotubes/Reduced Mildly Oxidized Graphene Oxide Ternary Composite as the Material for Supercapacitors

  • Lv, Mei-Yu;Liu, Kai-Yu;Li, Yan;Wei, Lai;Zhong, Jian-Jian;Su, Geng
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1349-1355
    • /
    • 2014
  • A three-dimensional (3D) $Co_3O_4$/mildly oxidized multiwalled carbon nanotubes (moCNTs)/reduced mildly oxidized graphene oxide (rmGO) ternary composite was prepared via a simple and green hydrolysishydrothermal approach by mixing $Co(Ac)_2{\cdot}4H_2O$ with moCNTs and mGO suspension in mixed ethanol/$H_2O$. As characterized by scanning electron microscopy and transmission electron microscopy, $Co_3O_4$ nanoparticles with size of 20-100 nm and moCNTs are effectively anchored in mGO. Cyclic voltammetry and galvanostatic charge-discharge measurements were adopted to investigate the electrochemical properties of $Co_3O_4$/moCNTs/rmGO ternary composite in 6 M KOH solution. In a potential window of 0-0.6 V vs. Hg/HgO, the composite delivers an initial specific capacitance of 492 $Fg^{-1}$ at 0.5 $Ag^{-1}$ and the capacitance remains 592 $Fg^{-1}$ after 2000 cycles, while the pure $Co_3O_4$ shows obviously capacitance fading, indicating that rmGO and moCNTs greatly enhance the electrochemical performance of $Co_3O_4$.

Synthesis and Solution Properties of Zwitterionic Copolymer of Acrylamide with 3-[(2-Acrylamido)dimethylammonio]propanesulfonate

  • Xiao, Hui;Hu, Jing;Jin, Shuailin;Li, Rui Hai
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2616-2622
    • /
    • 2013
  • A novel zwitterionic monomer 3-[(2-acrylamido)dimethylammonio]propanesulfonate (DMADAS) was designed and synthesized in this study. Then it was polymerized with acrylamide (AM) by free radical polymerization in 0.5 mol/L NaCl solution with ammonium persulfate ($(NH_4)_2S_2O_8$) and sodium sulfate ($NaHSO_3$) as initiator. The structure and composition of DMADAS and acrylamide-3-[(2-acrylamido)-dimethylammonio]propanesulfonate copolymer (P-AM-DMADAS) were characterized by FT-IR spectroscopy, $^1H$ NMR and elemental analyses. Isoelectric point (IEP) of P-AM-DMADAS was tested by nanoparticle size and potential analyzer. Solution properties of copolymer were studied by reduced viscosity. Antipolyelectrolyte behavior was observed and was found to be enhanced with increasing DMADAS content in copolymer. The results showed that the viscosity of P-AM-DMADAS is 5.472 dl/g in pure water. Electrolyte was added, which weakened the mutual attraction between sulfonic acid group and quaternary ammonium group. The conformation became loose, which led to the increase of reduced viscosity. The ability of monovalent and divalent cation influencing the viscosity of zwitterionic copolymer obeyed the following sequence: $Li^+$ < $Na^+$ < $K^+$, $Mg^{2+}$ < $Ca^{2+}$ < $Ba^{2+}$, and that of anion is in the order: $Cl^-$ < $Br^-$ < $I^-$, $CO{_3}^{2-}$ > $SO{_3}^{2-}{\approx}SO{_4}^{2-}$.

Electrolyzed water as an alternative for environmentally-benign semiconductor cleaning chemicals

  • Ryoo, Kunkul;Kang, Byeongdoo
    • Clean Technology
    • /
    • v.7 no.3
    • /
    • pp.215-223
    • /
    • 2001
  • A present semiconductor cleaning technology is based upon RCA cleaning technology which consumes vast amounts of chemicals and ultra pure water(UPW) and is the high temperature process. Therefore, this technology gives rise to the many environmental issues, and some alternatives such as electrolyzed water(EW) are being studied. In this work, intentionally contaminated Si wafers were cleaned using the electrolyzed water. The electrolyzed water was generated by an electrolysis system which consists of three anode, cathode, and middle chambers. Oxidative water and reductive water were obtained in anode and cathode chambers, respectively. In case of NH4Cl electrolyte, the oxidation-reduction potential and pH for anode water(AW) and cathode water(CW) were measured to be +1050mV and 4.8, and -750mV and 10.0, respectively. AW and CW were deteriorated after electrolyzed, but maintained their characteristics for more than 40 minutes sufficiently enough for cleaning. Their deterioration was correlated with CO2 concentration changes dissolved from air. Contact angles of UPW, AW, and CW on DHF treated Si wafer surfaces were measured to be $65.9^{\circ}$, $66.5^{\circ}$ and $56.8^{\circ}$, respectively, which characterizes clearly the eletrolyzed water. To analyze the amount of metallic impurities on Si wafer surface, ICP-MS was introduced. It was known that AW was effective for Cu removal, while CW was more effective for Fe removal. To analyze the number of particles on Si wafer surfaces, Tencor 6220 were introduced. The particle distributions after various particle removal processes maintained the same pattern. In this work, RCA consumed about $9{\ell}$ chemicals, while EW did only $400m{\ell}$ HCl electrolyte or $600m{\ell}$ NH4Cl electrolyte. It was hence concluded that EW cleaning technology would be very effective for promoting environment, safety, and health(ESH) issues in the next generation semiconductor manufacturing.

  • PDF

In Vitro Antioxidant and Antiproliferative Activities of Novel Orange Peel Extract and It's Fractions on Leukemia HL-60 Cells

  • Diab, Kawthar AE;Shafik, Reham Ezzat;Yasuda, Shin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7053-7060
    • /
    • 2015
  • In the present work, novel orange peel was extracted with 100%EtOH (ethanol) and fractionated into four fractions namely F1, F2, F3, F4 which were eluted from paper chromatographs using 100%EtOH, 80%EtOH, 50%EtOH and pure water respectively. The crude extract and its four fractions were evaluated for their total polyphenol content (TPC), total flavonoid content (TFC) and radical scavenging activity using DPPH (1,1-diphenyl-2-picrylhydrazyl) assay. Their cytotoxic activity using WST assay and DNA damage by agarose gel electrophoresis were also evaluated in a human leukemia HL-60 cell line. The findings revealed that F4 had the highest TPC followed by crude extract, F2, F3 and F1. However, the crude extract had the highest TFC followed by F4, F3, F2, and F1. Depending on the values of $EC_{50}$ and trolox equivalent antioxidant capacity, F4 possessed the strongest antioxidant activity while F1 and F2 displayed weak antioxidant activity. Further, incubation HL-60 cells with extract/fractions for 24h caused an inhibition of cell viability in a concentration-dependent manner. F3 and F4 exhibited a high antiproliferative activity with a narrow range of $IC_{50}$ values ($45.9-48.9{\mu}g/ml$). Crude extract exhibited the weakest antiproliferative activity with an $IC_{50}$ value of $314.89{\mu}g/ml$. Analysis of DNA fragmentation displayed DNA degradation in the form of a smear-type pattern upon agarose gel after incubation of HL-60 cells with F3 and F4 for 6 h. Overall, F3 and F4 appear to be good sources of phytochemicals with antioxidant and potential anticancer activities.

Molecular Analysis of Archaea, Bacteria and Eucarya Communities in the Rumen - Review-

  • White, B.A.;Cann, I.K.O.;Kocherginskaya, S.A.;Aminov, R.I.;Thill, L.A.;Mackie, R.I.;Onodera, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.1
    • /
    • pp.129-138
    • /
    • 1999
  • If rumen bacteria can be manipulated to utilize nutrients (i.e., ammonia and plant cell wall carbohydrates) more completely and efficiently, the need for protein supplementation can be reduced or eliminated and the digestion of fiber in forage or agricultural residue-based diets could be enhanced. However, these approaches require a complete and accurate description of the rumen community, as well as methods for the rapid and accurate detection of microbial density, diversity, phylogeny, and gene expression. Molecular ecology techniques based on small subunit (SSU) rRNA sequences, nucleic acid probes and the polymerase chain reaction (PCR) can potentially provide a complete description of the microbial ecology of the rumen of ruminant animals. The development of these molecular tools will result in greater insights into community structure and activity of gut microbial ecosystems in relation to functional interactions between different bacteria, spatial and temporal relationships between different microorganisms and between microorganisms and reed panicles. Molecular approaches based on SSU rRNA serve to evaluate the presence of specific sequences in the community and provide a link between knowledge obtained from pure cultures and the microbial populations they represent in the rumen. The successful development and application of these methods promises to provide opportunities to link distribution and identity of gastrointestinal microbes in their natural environment with their genetic potential and in situ activities. The use of approaches for assessing pupulation dynamics as well as for assessing community functionality will result in an increased understanding and a complete description of the gastrointestinal communities of production animals fed under different dietary regimes, and lead to new strategies for improving animal growth.

A Study on Changes in the Images of Children Possessed by Applicants for the Department of Early Childhood Education after They Enter the Department (유아교육과 지원자의 유아에 대한 이미지와 입학 후 유아에 대한 이미지 변화 연구)

  • Sung, Won-Kyung
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.7
    • /
    • pp.684-697
    • /
    • 2015
  • The purpose of the present study was to examine the images of children possessed by applicants for the department of early childhood education and find out how the images of children have been changed when the applicants have entered the department from successful applicants. Study subjects were 328 applicants for the department of early childhood education and 25 students who passed the entrance examination and completed the first year. Data were collected by painting metaphors and the contents of the collected data were analyzed. According to the results of analysis, the images of children possessed by applicants for the department of early childhood education were 'beings that require sincerity, love, and attention', 'beings that must be taught and led', 'beings that are liberal and characterful', 'beings that are bright and pure and give happiness', 'beings that have potential for learning and growth' and 'beings that are soft and weak' and when one year had passed after the entrance into the department, the images of children possessed by the students were changed into the subjects of teaching by the students as teachers and images based on developmental knowledge of childhood.

High Temperature Oxidation and Sulfidation of Ni-15at.%W Coatings

  • Kim Chanwou;You Teayoul;Shapovalov Yuriy;Ko Jaehwang;Lee Dongbok;Lee Kyuhwan;Chang Doyon;Kim Dongsoo;Kwon Sikchol
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • Ni-15at.% W coatings with film thicknesses of 20-40 ㎛ were electroplated on a steel substrate, and their oxidation behavior was investigated at 700 and 800℃ in air. For comparison, a pure Ni coating and a bulk Ni were also oxidized. The Ni-15at.%W coating displayed the worst oxidation resistance, due to the formation of less-protective NiO, Fe₂O₃, NiFe₂O₄ and NiWO₄. The corrosion behavior Ni-15at.%W coatings electroplated on a steel substrate was similarly investigated at 700 and 800℃ in the Ar-l%SO₂ atmosphere. For comparison, the uncoated steel substrate was also corrosion-tested in the Ar-l %SO₂ atmosphere. Severe scale spallation and the internal corrosion of the steel that occurred in the uncoated substrate were not observed in the coated specimen. However, it seemed that the Ni-15at.%W coating cannot be a potential candidate as a sulfidation-resistant coating, due to the formation of less-protective NiO, NiS, WO₃ and NiWO₄.

Study on the Synthsis and Characteristics of Lipophilic Derivatives of β-Sitosterol (β-시토스테롤의 지용성 치환체의 합성 및 특성에 관한 연구)

  • Chung, Dae-won;Cho, Young Tai
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.375-380
    • /
    • 2006
  • In the paper, lipophilic derivatives of $\beta$-sitosterol, which are known to have a potential to reduce blood cholesterol level, were synthesized by the esterification of $\beta$-sitosterol and fatty acids. When the esterification reactions using stearic acid, oleic acid or linoleic acid as fatty acids were carried out in the presence of an acidic catalyst, the reaction for unsaturated fatty acids such as oleic acid and linoleic acid afforded a significant amount of side products which may be produced by oxidation of unsaturated groups. On the other hand, esterification reactions in the presence of dehydrating agents and a basic catalyst gave pure products regardless of the nature of fatty acids. The solubilities of lipophilic derivatives of $\beta$-sitostero to organic solvents and edible oil were observed to increase as the degree of unsaturation of fatty acids increases.

The Effects of Bioactive Compounds and Fatty Acid Compositions on the Oxidative Stability of Extra Virgin Olive Oil Varieties

  • Lee, Ok-Hwan;Kim, Young-Cheul;Kim, Kui-Jin;Kim, Young-Chan;Lee, Boo-Yong
    • Food Science and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.415-420
    • /
    • 2007
  • The aim of this study was to determine the various bioactive components of five olive oil varieties, as well as to assess their contribution to the oxidative stability of the oils. Fatty acids, ${\alpha}$-tocopherol, ${\beta}$-carotene, total flavonoids, total phenols, and certain phenolic compounds of extra virgin olive oils (EVOO; blended, arbequina, hojiblanca, and picual) and pure olive oil (POO) were examined. Oxidation stability was evaluated by the peroxide value (POV). The total content of all the studied antioxidant compounds was significantly higher in the EVOOs than the POO (p<0.05). Among the EVOOs, picual had the highest levels of ${\alpha}$-tocopherol ($10.18{\pm}0.40\;mg/100\;g$), ${\beta}$-carotene ($557{\pm}8\;{\mu}g/100\;g$), and total phenols ($110.7{\pm}1.3\;mg/g$), which correlated strongly with antioxidative capacity. Furthermore, the lowest POV occurred in picual EVOO and correlated with the highest monounsaturated fatty acid (MUFA, C16:1 and C18:1) and lowest polyunsaturated fatty acid (PUFA, C18:2 and C18:3) compositions, suggesting the ratio of MUFA to PUFA is a critical parameter for the oxidative stability of olive oil. Our results indicate that the oxidative stability and antioxidant potential of EVOO depends not only on the antioxidant vitamins, but also on the amount of phenolic compounds and fatty acid profile of the oil.