• Title/Summary/Keyword: Pure Potential

Search Result 451, Processing Time 0.035 seconds

Generation of Reactive Oxygen Species Contributes to the Development of Carbon Black Cytotoxicity to Vascular Cells

  • Lee, Jong-Gwan;Noh, Won-Jun;Kim, Hwa;Lee, Moo-Yeol
    • Toxicological Research
    • /
    • v.27 no.3
    • /
    • pp.161-166
    • /
    • 2011
  • Carbon black, a particulate form of pure elemental carbon, is an industrial chemical with the high potential of occupational exposure. Although the relationship between exposure to particulate matters (PM) and cardiovascular diseases is well established, the cardiovascular risk of carbon black has not been characterized clearly. In this study, the cytotoxicity of carbon black to vascular smooth muscle and endothelial cells were examined to investigate the potential vascular toxicity of carbon black. Carbon black with distinct particle size, N330 (primary size, 28~36 nm) and N990 (250~350 nm) were treated to A-10, rat aortic smooth muscle cells and human umbilical vein endothelial cell line, ECV304, and cell viability was assessed by lactate dehydrogenase (LDH) leakage assay. Treatment of carbon black N990 resulted in the significant reduction of viability in A-10 cells at 100 ${\mu}g$/ml, the highest concentration tested, while N330 failed to cause cell death. Cytotoxicity to ECV304 cells was induced only by N330 at higher concentration, 200 ${\mu}g$/ml, suggesting that ECV304 cells were relatively resistant to carbon black. Treatment of 100 ${\mu}g$/ml N990 led to the elevation of reactive oxygen species (ROS) detected by dichlorodihydrofluorescein (DCF) in A-10 cells. Pretreatment of antioxidants, N-acetylcysteine (NAC) and sulforaphane restored decreased viability of N990-treated A-10 cells, and N-acetylcysteine, but not sulforaphane, attenuated N990-induced ROS generation in A-10 cells. Taken together, present study shows that carbon black is cytotoxic to vascular cells, and the generation of reactive oxygen contributes to the development of cytotoxicity. ROS scavenging antioxidant could be a potential strategy to attenuate the toxicity induced by carbon black exposure.

Useful Corrosion - Potential of Magnesium Alloys as Implants

  • Kaya, A. Arslan;Kaya, R. Alper;Witte, Frank;Duygulu, Ozgur
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.162-167
    • /
    • 2008
  • Degradable implants have been in use for bone surgery for decades. However, degradable metal implants are one of the new research areas of biomaterials science. Magnesium has good biocompatibility due to its low toxicity, and it is a corroding, i.e. dissolvable, metal. Furthermore, magnesium is needed in human body, and naturally found in bone tissue. There have been some published reports also asserting the potential bone cell activation or bone healing effect of high magnesium ion concentrations. The classic method for achieving intertransverse process fusion involves autogenous iliac crest bone graft. Several investigations have been performed to enhance this type of autograft fusion. However, there is no research which has been undertaken to investigate the efficiency of pure magnesium particles in posterolateral spinal fusion. In this study, corrosion behavior of magnesium metal at the bone interface, the possibility of new bone cell formation and the degree of effectiveness in producing intertransverse process lumbar fusion in a sheep model have been investigated. Cortical bone screws were machined from magnesium alloy AZ31 extruded rod and implanted to hip-bones of sheep via surgery. Three months after surgery, the bone segments carrying these screws were removed from the sacrificed animals. Samples were sectioned to reveal Mg/bone interfaces and investigated using optical microscope, SEM-EDS and radiography. Optical and SEM images showed that there was a significant amount of corrosion on the magnesium screw. The elemental mapping results indicate, due to the presence of calcium and phosphorus elements, that there exists new bone formation at the interface. Furthermore, sixteen sheep were subjected to intertransverse process spinal fusions with pedicle screw fixation at various locations along their spines. Each animal was treated with 5cc autograft bone at one fusion level and 1cc magnesium+5cc autograft bone at the other. Six months after surgery, bone formation was evaluated by gross inspection and palpation, and radiological, histological, scanning electron microscopic and x-ray diffraction analyses. It may be stated that the potential for using useful corrosion of magnesium alloys in medical applications is expected to be significant.

Bioavailability and Efficiency of Ten Catechins as an Antioxidant

  • Shi, John
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.3
    • /
    • pp.327-331
    • /
    • 2002
  • Tea is a pleasant, popular and safe beverage in the world. During the past decade, epidemiological studies have shown that tea catechins intake is associated with lower risk of cardiovascular disease. Tea provides a dietary source of health-promoting components to help humans reduce a wide variety of cancer risks and chronic diseases. The antioxidative activity of tea-derived catchins has been extensively studied. The antioxidant effect is a synergistic action between catechins e.g. EGCG, EGC, ECG, EC, pheophytins a and b, and other components in tea leaves, which aye more bioavailable for human body. Green tea has a Higher content of catechins than other kinds of tea. Green tea extract with hot water has high potential and more efficiency to reduce cancer risk than any other tea products or pure EGCG. Protein, iyon, and other food components may interfere with the bioavailability of ten catechins. Interaction of catechins with drug affects the cancer-preventive activity of some cancer-fighting medication. Further studies are required to determine the bioavailability of tea catechins and cancer-preventive functionality.

Investigation of Simple Electrochemical Conditions for Generation of Ozonized Water

  • Tanaka, Mutsumi;Kim, Han-Joo;Kim, Tae-Il;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.135-140
    • /
    • 2008
  • An electrochemical generation of ozonized water was investigated by using ${\beta}-PbO_2$ as an anode and tap water as an anolyte. According to the potentiometric ozone detection which utilizes potential differences arisen from a chemical reaction of ozone and iodide, increasing tendency of ozone concentration on electrolysis time could be observed to show the maximum value of 8 ppm at an electrolysis time of 10 min. Ozone could be generated promptly even at an electrolysis time of 10 sec., suggesting great advantages of this electrochemical process in terms of simplicity and readiness that might be applied directly to practical uses including medical and/ or food industries. Influences of electrolysis on the properties and surface conditions of a $PbO_2$ electrode were also discussed from the results of cyclic voltammetry, scanning electron microscope, and X-ray diffractometer.

ON A DISCUSSION OF NONLINEAR INTEGRAL EQUATION OF TYPE VOLTERRA-HAMMERSTEIN

  • El-Borai, M.M.;Abdou, M.A.;El-Kojok, M.M.
    • The Pure and Applied Mathematics
    • /
    • v.15 no.1
    • /
    • pp.1-17
    • /
    • 2008
  • Here, we consider the existence and uniqueness solution of nonlinear integral equation of the second kind of type Volterra-Hammerstein. Also, the normality and continuity of the integral operator are discussed. A numerical method is used to obtain a system of nonlinear integral equations in position. The solution is obtained, and many applications in one, two and three dimensionals are considered.

  • PDF

Preparation and Characterization of Spherical Carbon Composite for Use as Anode Material for Lithium Ion Batteries

  • Ahn, Byoung-Hoon;Lee, Sung-Man
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1331-1335
    • /
    • 2010
  • A novel spherical carbon composite material, in which nanosized disordered carbons are dispersed in a soft carbon matrix, has been prepared and investigated for use as a potential anode material for lithium ion batteries. Disordered carbons were synthesized by ball milling natural graphite in air. The composite was prepared by mixing the ball-milled graphite with petroleum pitch powder, pelletizing the mixture, and pyrolyzing the pellets at $1200^{\circ}C$ in an argon flow. The ballmilled graphite consists of distorted nanocrystallites and amorphous phases. In the composite particle, nanosized flakes are uniformly distributed in a soft carbon matrix, as revealed by X-ray diffractometer (XRD) and transmission electron microscopy (TEM) experiments. The composite is compatible with a pure propylene carbonate (PC) electrolyte and shows high rate capability and excellent cycling performance. The electrochemical properties are comparable to those of hard carbon.

Particle Detachment in Granular Media Filtration (입상여과에서 입자물질의 탈리)

  • Kim, Jinkeun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.673-679
    • /
    • 2004
  • Particle breakthrough can occur by either the breakoff of previously captured particles (or flocs) or the direct passage of some influent particles through the filter. Filtration experiments were performed in a laboratory-scale filter using spherical glass beads with a diameter of 0.55 mm as collectors. A single type of particle suspension (Min-U-Sil 5, nearly pure $SiO_2$) and three different destabilization methods (pH control, alum and polymer destabilization) were utilized. The operating conditions were similar to those of standard media filtration practice: a filtration velocity of 5 m/h. To assess the possibility of particle detachment during the normal filtration, a hydraulic shock load (20% increase of flow rate) was applied after 4 hours of normal filtration. The magnitude of particle detachment was proportional to the particle size for non-Brownian particles. At the same time, less favorable particles, i.e., particles with larger surface charge, were easily detached during the hydraulic shock load. Therefore, proper particle destabilization before filtration is crucial for maximum particle removal as well as minimum particle breakthrough.

Numerical analysis for Bifurcation phenomenon in a Two dimensional wall-driven cavity flow (2차원 벽구동 캐비티유동 분기현상의 수치해석)

  • Cho Ji Ryong;Hong Sang Pyo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.115-122
    • /
    • 2000
  • 본 연구에서는 2 차원 벽구동 캐비티 유동에 의하여 나타나는 이력효과에 의한 분기(Bifurcation)현상을 전산유체기법을 사용하여 연구하였다. 캐비티는 북쪽과 동쪽벽이 움직일 수 있고, 다른 두 벽은 고정되어있는 구조이다. 실험은 Reynolds 수 100 에서 1000까지 증가시켜가면서 북쪽벽과 동쪽벽을 동시에 가속 시켜 정상상태에 이르게 한 경우와 북쪽벽이 먼저 가속되어 정상해에 이른 후 동쪽벽을 나중에 가속하여 재차 정상상태에 이르게 한 경우를 비교하였다. 그 결과 Reynolds수가 약 200이상부터 벽에 작용하는 항력, 유량함수의 값, 재부착점등이 분기현상을 나타냄을 확인하였다.

  • PDF

Quantitative Analysis of PET Measurements in Tumors (종양학 분야에서 양전자방출촬영을 이용한 정량분석)

  • Choi, Chang-Woon
    • 대한핵의학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.60-65
    • /
    • 2001
  • The positron emission tomography (PET) has been used for the evaluation of the characteristics of various tumors. The role of PET in oncology has been evolved from a pure research tool to a methodology of enormous clinical potential. The unique characteristics of PET imaging make sophisticated quantitation possible. Several quantitative methods, such as standardized uptake values (SUV), simplified quantitative method, Patlak graphical analysis, and Sokoloff's glucose metabolism measurement, have been used in the field of oncology. However, each quantitative method has limitations of its own. For example, the SUV has been used as a quantitative index of glucose metabolism for tumor classification and monitoring response to treatment, even though it depends on blood glucose level, body configuration of patient, and scanning time. The quantitative methods of PET are reviewed and strategy for implementing these methods are presented.

  • PDF

Ferromagnetic Semiconductors: Preparation and Properties

  • 조성래
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.19-19
    • /
    • 2003
  • The injection of spins into nonmagnetic semiconductors has recently attracted great interest due to the potential to create new classes of spin-dependent electronic devices. A recent strategy to achieve control over the spin degree of freedom is based on dilute ferromagnetic semiconductors. Ferromagnetism has been reported in various semiconductor groups including II-Ⅵ, III-V, IV and II-IV,-V$_2$, which will be reviewed. On the other hand, to date the low solubility of magnetic ions in non-magnetic semiconductor hosts and/or low Curie temperature have limited the opportunities. Therefore the search for other promising ferromagnetic semiconducting materials, with high magnetic moments and high Curie temperatures (Tc), is of the utmost importance. In this talk, we also introduce new pure ferromagnetic semiconductors, MnGeP$_2$ and MnGeAs$_2$, exhibiting ferromagnetism and a magnetic moment per Mn at 5K larger than 2.40 ${\mu}$B. The calculated electronic structures using the FLAPW method show an indirect energy gap of 0.24 and 0.06 eV, respectively. We have observed spin injection in MnGeP$_2$ and MnGeAs$_2$ magnetic tunnel junctions through semiconducting barriers.

  • PDF