• 제목/요약/키워드: Pure Axial Vibration

검색결과 5건 처리시간 0.017초

Physical insight into Timoshenko beam theory and its modification with extension

  • Senjanovic, Ivo;Vladimir, Nikola
    • Structural Engineering and Mechanics
    • /
    • 제48권4호
    • /
    • pp.519-545
    • /
    • 2013
  • An outline of the Timoshenko beam theory is presented. Two differential equations of motion in terms of deflection and rotation are comprised into single equation with deflection and analytical solutions of natural vibrations for different boundary conditions are given. Double frequency phenomenon for simply supported beam is investigated. The Timoshenko beam theory is modified by decomposition of total deflection into pure bending deflection and shear deflection, and total rotation into bending rotation and axial shear angle. The governing equations are condensed into two independent equations of motion, one for flexural and another for axial shear vibrations. Flexural vibrations of a simply supported, clamped and free beam are analysed by both theories and the same natural frequencies are obtained. That fact is proved in an analytical way. Axial shear vibrations are analogous to stretching vibrations on an axial elastic support, resulting in an additional response spectrum, as a novelty. Relationship between parameters in beam response functions of all type of vibrations is analysed.

수학적 전개에 의한 픽업 액추에이터의 진동 분석 (A Mathematical Approach for Vibration Analysis of an Pickup Actuator)

  • 이경택
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.792-798
    • /
    • 2012
  • This study shows the vibration characteristics of an actuator with six wire-suspensions, used in optical pickups of optical disc drives (ODDs). In this paper, the vibration characteristics of this beam structure is induced mathematically. To obtain vibration modes of focusing direction, the vibration analysis is achieved in lateral and longitudinal directions of the structure. The accuracy of induced vibration characteristics is proved by comparing mode frequencies with a finite element analysis. Finally, it is shown that mode shapes can be modified by changing design parameters in mathematical expressions.

  • PDF

Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam

  • Ehyaei, Javad;Akbarshahi, Amir;Shafiei, Navvab
    • Advances in nano research
    • /
    • 제5권2호
    • /
    • pp.141-169
    • /
    • 2017
  • In this paper, a nanobeam connected to a rotating molecular hub is considered. The vibration behavior of rotating functionally graded nanobeam based on Eringen's nonlocal theory and Euler-Bernoulli beam model is investigated. Furthermore, axial preload and porosity effect is studied. It is supposed that the material attributes of the functionally graded porous nanobeam, varies continuously in the thickness direction according to the power law model considering the even distribution of porosities. Porosity at the nanoscopic length scale can affect on the rotating functionally graded nanobeams dynamics. The equations of motion and the associated boundary conditions are derived through the Hamilton's principle and generalized differential quadrature method (GDQM) is utilized to solve the equations. In this paper, the influences of some parameters such as functionally graded power (FG-index), porosity parameter, axial preload, nonlocal parameter and angular velocity on natural frequencies of rotating nanobeams with pure ceramic, pure metal and functionally graded materials are examined and some comparisons about the influence of various parameters on the natural frequencies corresponding to the simply-simply, simplyclamped, clamped-clamped boundary conditions are carried out.

수학적 전개에 의한 픽업 액추에이터의 진동 분석 (A Mathematical Approach for Vibration Analysis of a Pickup Actuator)

  • 이경택
    • 한국소음진동공학회논문집
    • /
    • 제22권11호
    • /
    • pp.1128-1136
    • /
    • 2012
  • This paper analyzes the vibration characteristics of an optical pickup actuator, which has six wire-suspensions and is used in optical disc drives(ODDs). The vibration characteristics of the actuator is mathematically described by analyzing its beam configuration and motion condition confined to lateral and longitudinal directions of the beams. The accuracy of the vibration characteristics is proved by comparing mode frequencies with a finite element analysis. Finally, it is shown that mode frequencies and shapes can be modified by changing design parameters in mathematical expressions.

Thermoelastic interaction in functionally graded nanobeams subjected to time-dependent heat flux

  • Zenkour, Ashraf M.;Abouelregal, Ahmed E.
    • Steel and Composite Structures
    • /
    • 제18권4호
    • /
    • pp.909-924
    • /
    • 2015
  • This paper investigates the vibration phenomenon of a nanobeam subjected to a time-dependent heat flux. Material properties of the nanobeam are assumed to be graded in the thickness direction according to a novel exponential distribution law in terms of the volume fractions of the metal and ceramic constituents. The upper surface of the functionally graded (FG) nanobeam is pure ceramic whereas the lower surface is pure metal. A nonlocal generalized thermoelasticity theory with dual-phase-lag (DPL) model is used to solve this problem. The theories of coupled thermoelasticity, generalized thermoelasticity with one relaxation time, and without energy dissipation can extracted as limited and special cases of the present model. An analytical technique based on Laplace transform is used to calculate the variation of deflection and temperature. The inverse of Laplace transforms are computed numerically using Fourier expansion techniques. The effects of the phase-lags (PLs), nonlocal parameter and the angular frequency of oscillation of the heat flux on the lateral vibration, the temperature, and the axial displacement of the nanobeam are studied.