• 제목/요약/키워드: Punjab

검색결과 193건 처리시간 0.03초

A rock physical approach to understand geo-mechanics of cracked porous media having three fluid phases

  • Ahmad, Qazi Adnan;Wu, Guochen;Zong, Zhaoyun;Wu, Jianlu;Ehsan, Muhammad Irfan;Du, Zeyuan
    • Geomechanics and Engineering
    • /
    • 제23권4호
    • /
    • pp.327-338
    • /
    • 2020
  • The role of precise prediction of subsurface fluids and discrimination among them cannot be ignored in reservoir characterization and petroleum prospecting. A suitable rock physics model should be build for the extraction of valuable information form seismic data. The main intent of current work is to present a rock physics model to analyze the characteristics of seismic wave propagating through a cracked porous rock saturated by a three phase fluid. Furthermore, the influence on wave characteristics due to variation in saturation of water, oil and gas were also analyzed for oil and water as wet cases. With this approach the objective to explore wave attenuation and dispersion due to wave induce fluid flow (WIFF) at seismic and sub-seismic frequencies can be precisely achieved. We accomplished our proposed approach by using BISQ equations and by applying appropriate boundary conditions to incorporate heterogeneity due to saturation of three immiscible fluids forming a layered system. To authenticate the proposed methodology, we compared our results with White's mesoscopic theory and with the results obtained by using Biot's poroelastic relations. The outcomes reveals that, at low frequencies seismic wave characteristics are in good agreement with White's mesoscopic theory, however a slight increase in attenuation at seismic frequencies is because of the squirt flow. Moreover, our work crop up as a practical tool for the development of rock physical theories with the intention to identify and estimate properties of different fluids from seismic data.

Subfertility Problems Leading to Disposal of Breeding Bulls

  • Khatun, Marzina;Kaur, Simarjeet;Simarjeet, Simarjeet;Mukhopadhyay, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권3호
    • /
    • pp.303-308
    • /
    • 2013
  • Subfertility problems are encountered frequently in the cattle and buffalo bulls commercially maintained for semen production in dairy farms and under field conditions for natural insemination. Reports are scarce on the incidence of subfertility in breeding bulls, especially in India. The objective of the present study was to assess the incidence of the male reproductive anomalies leading to disposal of bovine bulls at GADVASU dairy farm, Ludhiana, Punjab (India). Data on frequency of various subfertility and disposal pattern of bulls maintained at the dairy farm, GADVASU, were collected for 12 yrs (1999 to 2010) and compiled from different record registers. Percentage of bulls that produced freezable semen (out of reserved ones) was less in cattle (25.641%) as compared to that of buffalo (30.4%). Various subfertility traits like poor libido and unacceptable seminal profile were found to be the significant reasons (p<0.01) for culling of the breeding bulls. Inadequate sex drive and poor semen quality were the main contributing factors for bull disposal in cattle whereas poor semen freezability was most frequently observed in buffalo bulls. All the male reproductive traits were significantly different (p<0.05) for the periods of birth, except for semen volume, initial motility (IM), age at last semen collection (ALSC) and age at disposal. The ages at first and last semen collection as well as freezing (i.e. AFSC, ALSC and AFSF, ALSF, respectively) and age at disposal (AD) were higher in buffalo. The spermatological parameters and semen production period (SPP) were higher in cattle. The age at first semen donation and breeding period could be reduced by introducing the bulls to training at an early age. The results revealed an increasing trend in individual motility (IM) while semen volume, AFSC, AFSF, AD, FSPP, SPP, ALSC and ALSF showed a decreasing, however, not a definite trend, over the periods. The semen donation traits like, AFSF, of the cattle and buffalo bulls could be predicted from the AFSC, using prediction equation derived in the present study.

No Association between the CCR5Δ32 Polymorphism and Sporadic Esophageal Cancer in Punjab, North-West India

  • Sambyal, Vasudha;Manjari, Mridu;Sudan, Meena;Uppal, Manjit Singh;Singh, Neeti Rajan;Singh, Harpreet;Guleria, Kamlesh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권10호
    • /
    • pp.4291-4295
    • /
    • 2015
  • Background: Chemokines and their receptors influence carcinogenesis and cysteine-cysteine chemokine receptor 5 (CCR5) directs spread of cancer to other tissues. A 32 base pair deletion in the coding region of CCR5 that might alter the expression or function of the protein has been implicated in a variety of immune-mediated diseases. The action of antiviral drugs being proposed as adjuvant therapy in cancer is dependent on CCR5 wild type status. In the present study, distribution of CCR5${\Delta}32$ polymorphism was assessed in North Indian esophageal cancer patients to explore the potential of using chemokine receptors antagonists as adjuvant therapy. Materials and Methods: DNA samples of 175 sporadic esophageal cancer patients (69 males and 106 females) and 175 unrelated healthy control individuals (69 males and 106 females) were screened for the CCR5${\Delta}32$ polymorphism by direct polymerase chain reaction (PCR). Results: The frequencies of wild type homozygous (CCR5/CCR5), heterozygous (CCR5/${\Delta}32$) and homozygous mutant (${\Delta}32/{\Delta}32$) genotypes were 96.0 vs 97.72%, 4.0 vs 1.71% and 0 vs 0.57% in patients and controls respectively. There was no difference in the genotype and allele frequencies of CCR5${\Delta}32$ polymorphism in esophageal cancer patients and control group. Conclusions: The CCR5${\Delta}32$ polymorphism is not associated with esophageal cancer in North Indians. As the majority of patients express the wild type allele, there is potential of using antiviral drug therapy as adjuvant therapy.

Influence of Re-growth Interval on Chemical Composition, Herbage Yield, Digestibility and Digestion Kinetics of Setaria sphacelata and Cenchrus ciliaris in Buffaloes

  • Mahr-un-Nisa, Mahr-un-Nisa;Khan, M. Ajmal;Sarwar, Muhammad;Mushtaque, M.;Murtaza, G.;Lee, W.S.;Kim, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권3호
    • /
    • pp.381-385
    • /
    • 2006
  • This study examined the influence of re-growth periods on chemical composition, biomass production, nutritive value and digestion kinetics of Setaria sphacelata (SS) and Cenchrus ciliaris (CC) in ruminally cannulated buffalo bulls. Two re-growth intervals i.e. clipping every month ($CI_1$) and clipping after every two months ($CI_2$) were compared with the control (clipped after 4 months). Mean values of leaf to stem ratio in SS and CC grasses were decreased (p<0.05) with increasing re-growth interval. The lowest leaf to stem ratio was recorded in control plots of both grasses. In both grasses, increasing growth period increased the concentrations of dry matter (DM), neutral detergent fiber (NDF) and organic matter (OM) and decreased crude protein (CP). Mean dry herbage, OM and CP yields of SS and CC were increased (p<0.05) with increasing re-growth interval. Ruminal DM and NDF digestibilities of SS and CC were decreased (p<0.05) with increasing interval. Ruminal rate of DM and NDF disappearance was higher while the ruminal lag time of these nutrients was lower with monthly than with bi-monthly clipping interval. The results from present study imply that SS and CC clipped after every two months is more beneficial than when clipped every month or every four months in terms of optimal biomass with adequate nutritional value for buffaloes.

Chemical Composition, Herbage Yield and Nutritive Value of Panicum antidotale and Pennisetum orientale for Nili Buffaloes at Different Clipping Intervals

  • Sarwar, Muhammad;Mahr-un-Nisa, Mahr-un-Nisa;Khan, M. Ajmal;Mushtaque, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권2호
    • /
    • pp.176-180
    • /
    • 2006
  • This study was carried out to establish clipping interval of Pennisetum orientale (PO) and Panicum antidotale (PA) to get maximum biomass production with optimal nutritional value for Nili buffaloes. Two clipping intervals i.e. $CI_1$, and $CI_2$ (clipped after every one and two months, respectively) were studied for both grasses. The data on various parameters were compared with PO and PA each clipped at 4 months of age (control). Leaf to stem ratio in both PO and PA declined with increasing clipping interval. Concentration of dry matter (DM) and organic matter (OM) increased (p<0.05) whereas crude protein contents decreased with increasing clipping interval in both grasses. Crude protein and dry herbage yields in PO and PA increased (p<0.05) with increasing clipping interval. The DM and neutral detergent fiber (NDF) digestibilities of PO and PA in ruminally cannulated buffalo bulls decreased (p<0.05) due to more lignification with increasing clipping interval. Ruminal extent of digestion, rate of disappearance of DM and neutral detergent fiber of PO and PA decreased in buffaloes while ruminal lag time of these nutrients increased significantly (p<0.05) with increasing clipping interval. The results from the study imply that two month clipping interval for both PO and PA grasses favored higher biomass with greater nutritional value for Nili buffaloes and sustained grass vigor.

An Intelligent Wireless Sensor and Actuator Network System for Greenhouse Microenvironment Control and Assessment

  • Pahuja, Roop;Verma, Harish Kumar;Uddin, Moin
    • Journal of Biosystems Engineering
    • /
    • 제42권1호
    • /
    • pp.23-43
    • /
    • 2017
  • Purpose: As application-specific wireless sensor networks are gaining popularity, this paper discusses the development and field performance of the GHAN, a greenhouse area network system to monitor, control, and access greenhouse microenvironments. GHAN, which is an upgraded system, has many new functions. It is an intelligent wireless sensor and actuator network (WSAN) system for next-generation greenhouses, which enhances the state of the art of greenhouse automation systems and helps growers by providing them valuable information not available otherwise. Apart from providing online spatial and temporal monitoring of the greenhouse microclimate, GHAN has a modified vapor pressure deficit (VPD) fuzzy controller with an adaptive-selective mechanism that provides better control of the greenhouse crop VPD with energy optimization. Using the latest soil-matrix potential sensors, the GHAN system also ascertains when, where, and how much to irrigate and spatially manages the irrigation schedule within the greenhouse grids. Further, given the need to understand the microclimate control dynamics of a greenhouse during the crop season or a specific time, a statistical assessment tool to estimate the degree of optimality and spatial variability is proposed and implemented. Methods: Apart from the development work, the system was field-tested in a commercial greenhouse situated in the region of Punjab, India, under different outside weather conditions for a long period of time. Conclusions: Day results of the greenhouse microclimate control dynamics were recorded and analyzed, and they proved the successful operation of the system in keeping the greenhouse climate optimal and uniform most of the time, with high control performance.

Comparative Growth Performance of Calves of Different Cattle Breeds Under a Feedlot Fattening System

  • Ahmad, Ijaz;Fiaz, Muhammad;Manzoor, Muhammad Nauman;Ahmad, Tanveer;Yaqoob, Muhammad;Jo, Ik Hwan
    • Journal of Animal Science and Technology
    • /
    • 제55권6호
    • /
    • pp.539-543
    • /
    • 2013
  • Male cattle calves (n=24), 9-12 months age, with an average body weight of 120 {\pm} 20 kg were fed total mixed rations (TMR) for 120 days to determine their growth performance. Animals were divided into four groups (six of each breed): Crossbred (Friesian${\times}$Sahiwal), Dhanni, Lohani, and Cholistani. The data obtained were analyzed using analysis of variance techniques under a completely randomized design. The average daily gain (ADG), feed efficiency (FE), and dressing percentage ranged from 639-892 g/d, 0.105-0.155 kg/kg, and 51.2-51.5%, respectively, in the different breeds. The ADG and FE did not differ between the Crossbred, Dhanni, and Lohani breeds, but these values were lower in Cholistani calves (P<0.05). The dressing percentage was similar in all breeds. The highest increase in body height was observed in Dhanni calves, but heart girth was obviously higher in Lohani calves. The feed cost per kg gain was higher for Cholistani calves but similar among Crossbred, Dhanni, and Lohani calves (P>0.05). In conclusion, Dhanni, Lohani, and Crossbred calves possess the promising potential for beef production under the rainfed (Barani) conditions of the Punjab.

파키스탄 UCC 관개지역 밀·쌀 재배 필요수량에 대한 기후변화 영향 (Climatic Influence on the Water Requirement of Wheat-Rice Cropping System in UCC Command Area of Pakistan)

  • 미르자 주네이드 아흐메드;최경숙
    • 한국농공학회논문집
    • /
    • 제60권5호
    • /
    • pp.69-80
    • /
    • 2018
  • This study investigated climate change influences over crop water requirement (CWR) and irrigation water requirement (IWR) of the wheat-rice cropping system of Upper Chenab Canal (UCC) command in Punjab Province, Pakistan. PRECIS simulated delta-change climate projections under the A1B scenario were used to project future climate during two-time slices: 2030s (2021-2050) and 2060s (2051-2080) against baseline climatology (1980-2010). CROPWAT model was used to simulate future CWRs and IWRs of the crops. Projections suggested that future climate of the study area would be much hotter than the baseline period with minor rainfall increments. The probable temperature rise increased CWRs and IWRs for both the crops. Wheat CWR was more sensitive to climate-induced temperature variations than rice. However, projected winter/wheat seasonal rainfall increments were satisfactorily higher to compensate for the elevated wheat CWRs; but predicted increments in summer/rice seasonal rainfalls were not enough to complement change rate of the rice CWRs. Thus, predicted wheat IWRs displayed a marginal and rice IWRs displayed a substantial rise. This suggested that future wheat production might withstand the climatic influences by end of the 2030s, but would not sustain the 2060s climatic conditions; whereas, the rice might not be able to bear the future climate-change impacts even by end of the 2030s. In conclusion, the temperature during the winter season and rainfall during the summer season were important climate variables controlling water requirements and crop production in the study area.

Simulation of IWR Based on Different Climate Scenarios

  • Junaid, Ahmad Mirza;Arshad, M.;Choi, Kyung-Sook
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.519-519
    • /
    • 2016
  • Upper Chenab Canal (UCC) is a non-perennial canal in Punjab Province of Pakistan which provides irrigation water only in summer season. Winter and summer are two distinct cropping season with an average rainfall of about 161 mm and 700 mm respectively. Wheat-rice is common crop rotation being followed in the UCC command area. During winter season, groundwater and rainfall are the main sources of irrigation while canal and ground water is used to fulfil the crop water requirements (CWR) during summer. The objective of current study is to estimate how the irrigation water requirements (IWR) of the two crops are going to change under different conditions of temperature and rainfall. For this purpose, 12 different climatic scenarios were designed by combining the assumptions of three levels of temperature increase under dry, normal and wet conditions of rainfall. Weather records of 13 years (2000-2012) were obtained from PMD (Pakistan Meteorological Department) and CROPWAT model was used to simulate the IWR of the crops under normal and scenarios based climatic conditions. Both crops showed a maximum increase in CWR for temperature rise of $+2^{\circ}C$ i.e. 8.69% and 6% as compared to average. Maximum increment (4.1% and 17.51% respectively) in IWR for both wheat and rice was recorded when temperature rise of $+2^{\circ}C$ is coupled with dry rainfall conditions. March & April during winter and August & September during summer were the months with maximum irrigation requirements. Analysis also showed that no irrigation is needed for rice crop during May and June because of enough rainfall in this area.

  • PDF

파키스탄 기후변화에 따른 밀생산량 모의 (Simulation of Wheat Yield under Changing Climate in Pakistan)

  • 미르자 주네이드 아흐메드;최경숙
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.199-199
    • /
    • 2017
  • Sustainable wheat production is of paramount importance for attaining/maintaining the food self-sufficiency status of the rapidly growing nation of Pakistan. However, the average wheat yield per unit area has been dwindling in recent years and the climate-induced variations in rainfall patterns and temperature regimes, during the wheat growth period, are believed to be the reason behind this decline. Crop growth simulation models are powerful tools capable of playing pivotal role in evaluating the climate change impacts on crop yield or productivity. This study was aimed to predict the plausible variations in the wheat yield for future climatic trends so that possible mitigation strategies could be explored. For this purpose, Aquacrop model v. 4.0 was employed to simulate the wheat yield under present and future climatology of the largest agricultural province of Punjab in Pakistan. The data related to crop phenology, management and yield were collected from the experimental plots to calibrate and validate the model. The future climate projections were statistically downscaled from five general circulation models (GCMs) and compared with the base line climate from 1980 to 2010. The model was fed with the projected climate to simulate the wheat yield based on the RCP (representative concentration pathways) 4.5 and 8.5. Under the worst, most likely future scenario of temperature rise and rainfall reduction, the crop yield decreased and water footprint, especially blue, increased, owing to the elevated irrigation demands due to accelerated evapotranspiration rates. The modeling results provided in this study are expected to provide a basic framework for devising policy responses to minimize the climate change impacts on wheat production in the area.

  • PDF