• 제목/요약/키워드: Punggi-dae

검색결과 4건 처리시간 0.023초

조선시대의 바람 관측기기인 풍기(風旗)의 연구 (A Study on the Punggi (風旗), Meteorological Instrument Made in the Joseon Dynasty)

  • 전준혁;이용삼
    • 대기
    • /
    • 제23권1호
    • /
    • pp.47-61
    • /
    • 2013
  • The Punggi (風旗) is one of the meteorological instruments made in the Joseon Dynasty (朝鮮王朝). Its purpose was to observe the direction of the wind. It is estimated that it started its operation in the $16^{th}$ century at least. But it does not remain in a perfect form, like the Chugugi (測雨器) and the Supyo (水標). The Punggi (風旗) can only be found at old document data, while the stone used to build the Punggi still remains. Since the stone had been named as the Punggi-dae (風旗臺) by 和田雄治 (1917), the name has not been changed until now. The Punggi is currently located in the Gyeongbok-gung (景福宮) and the Changgyeong-gung (昌慶宮). Meantime, there have been several transfers of its position. However, 和田雄治 (1917)'s paper and the "每日新報" (Maeil-Sinbo, 1929) articles have provided new clues. Also, the word 'Hupungso (候風所)' was found in the "朝鮮王朝實錄" (The annals of the Joseon Dynasty) and the "承政院日記" (Daily records of royal secretariat of Joseon dynasty). A designed harbor where the ship was staying was usually considered a special section for wind observations. It is assumed that the Hupungso was in most of the harbors at that time. This paper assumes the Punggi and the Hupungso had a lot of interest in wind observations in the Joseon Dynasty. In this study, we'll look for contained information about the Punggi and the viewpoints about wind during the Joseon Dynasty.

초산훈증에 의한 포도저장병의 발생억제 효과 (Effect of Acetic Acid Fumigation to Prevent Postharvest Decay of Grapes)

  • 박석희;노영균;조두현;추연대
    • 한국식품저장유통학회지
    • /
    • 제7권3호
    • /
    • pp.241-244
    • /
    • 2000
  • 포도 저장중의 가장 큰 문젯점인 부패과 발생을 경감시키기 위하여 acetic acid를 'Campbell Early'와 'Sheridan'품종에 훈증처리하여 그 효과를 조사하였다. 그 결과 포도과실의 탈립정도는 acetic acid를 훈증처리한 후 저장 90일에 두 품종 모두 1.0~1.5%로 나타나 무처리의 2.9~8.0%와 비교하여 탈립억제 효과가 인정되었다. 부패과립은 acetic acid 훈증처리구의 경우 저장 90일에 과방당 0.7~2.9% 발생되어 무처리구의 8.3~27.6%와 비교하여 현저하게 감소되었고, PDA배지상에서 병원균의 생장유무를 관찰할 결과 병발생이 없어, acetic acid 훈증처리가 병발생 억제에 효과적이었다.

  • PDF

Discrimination of Panax ginseng Roots Cultivated in Different Areas in Korea Using HPLC-ELSD and Principal Component Analysis

  • Lee, Dae-Young;Cho, Jin-Gyeong;Lee, Min-Kyung;Lee, Jae-Woong;Lee, Youn-Hyung;Yang, Deok-Chun;Baek, Nam-In
    • Journal of Ginseng Research
    • /
    • 제35권1호
    • /
    • pp.31-38
    • /
    • 2011
  • In order to distinguish the cultivation area of Panax ginseng, principal component analysis (PCA) using quantitative and qualitative data acquired from HPLC was carried out. A new HPLC method coupled with evaporative light scattering detection (HPLC-ELSD) was developed for the simultaneous quantification of ten major ginsenosides, namely $Rh_1$, $Rg_2$, $Rg_3$, $Rg_1$, Rf, Re, Rd, $Rb_2$, Rc, and $Rb_1$ in the root of P. ginseng C. A. Meyer. Simultaneous separations of these ten ginsenosides were achieved on a carbohydrate analytical column. The mobile phase consisted of acetonitrile-water-isopropanol, and acetonitrile-water-isopropanol using a gradient elution. Distinct differences in qualitative and quantitative characteristics for ginsenosides were found between the ginseng roots produced in two different Korean cultivation areas, Ganghwa and Punggi. The ginsenoside profiles obtained via HPLC analysis were subjected to PCA. PCA score plots using two principal components (PCs) showed good separation for the ginseng roots cultivated in Ganghwa and Punggi. PC1 influenced the separation, capturing 43.6% of the variance, while PC2 affected differentiation, explaining 18.0% of the variance. The highest contribution components were ginsenoside $Rg_3$ for PC1 and ginsenoside Rf for PC2. Particularly, the PCA score plot for the small ginseng roots of six-year old, each of which was light than 147 g fresh weight, showed more distinct discrimination. PC1 influenced the separation between different sample sets, capturing 51.8% of the variance, while PC2 affected differentiation, also explaining 28.0% of the variance. The highest contribution component was ginsenoside Rf for PC1 and ginsenoside $Rg_2$ for PC2. In conclusion, the HPLC-ELSD method using a carbohydrate column allowed for the simultaneous quantification of ten major ginsenosides, and PCA analysis of the ginsenoside peaks shown on the HPLC chromatogram would be a very acceptable strategy for discrimination of the cultivation area of ginseng roots.

인삼(Panax ginseng C.A. Meyer)로부터 Malonyl ginsenoside의 분리 및 정량분석 (Identification and quantification of major malonyl ginsenosides isolated from Panax ginseng C.A. Meyer)

  • 신우철;정지윤;나현선;황보전;김형근;윤다혜;최보람;이영섭;김금숙;백남인;이이;이대영
    • Journal of Applied Biological Chemistry
    • /
    • 제62권4호
    • /
    • pp.375-384
    • /
    • 2019
  • 고려인삼(Panax ginseng C.A. Meyer)을 70% EtOH 수용액으로 저온 추출한 뒤, 감압 농축한 추출물을SiO2, ODS column chromatograph 및 중압분취(MPLC) 장비를 반복 실시하여 4종의 인삼 사포닌 화합물을 분리 및 정제하였다. NMR 및 고분해능 질량분석 장비를 이용하여 malonyl ginsenoside Rd (1), Rc (2), Rb2 (3), 및 Rb1 (4)로 구조 동정하였다. 분리한 4종의 화합물에 대하여 UPLC-MS/MS 질량분석기를 이용하여 수삼의 5년 및 6년근 뿌리의 동체를 정량분석 하였으며, malonyl ginsenoside의 총 함량의 합은 각각 6.62 및 2.34 mg/g으로 5년근이 약 2.8배 높은 것을 확인하였다. 인삼으로부터 분리된 화합물 중 malonyl ginsenoside Rd의 경우, 알코올에 의해 저해된 HepG2세포에 대해서 간세포를 보호하는 효과가 있음을 확인하였다.