• Title/Summary/Keyword: Punching system

Search Result 106, Processing Time 0.023 seconds

Design of the Inverter Control System of Punching M/C (Punching M/C의 인버터 제어기 설계)

  • Cho, Hyeon-Seob;Jun, Ho-Ik
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.132-134
    • /
    • 2010
  • In this paper new, inverter control system for TG feedback a formula Control was developed. The motor control system with TG feedback controller as an effect of load disturbance, it is very difficult to guarantee the robustness of control system. The function of the implementation are TG feedback type, and temperature scheme. The Inverter Control System approach is based on master-slave control concept. To show validity of the developed new inverter control system, severial experiments are illustrated.

  • PDF

Study on an Automatic Punching System for a LED Display using Flexible Plates (LED 디스플레이용 유연 보드의 자동 펀칭 시스템 연구)

  • Choi, Hyeung-Sik;Kang, Jin-Il;Her, Jae-Gwan;Han, Jong-Suk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.711-717
    • /
    • 2010
  • In this paper, a new automatic punching system that generates pinholes expressing texts or images on a plastic plate is developed. The pin-holed plate is used as a new glamorous display board reflecting colourful lights from the light emitting diode (LED) installed on the edge side of the plate. The punching system has four actuators which work together to make multiple holes with accurate position and depth on the plastic plate. For even reflection of the lights from texts or images on the board and fast production of the pin-holed boards, we developed an accurate actuating structure of the system cooperating with a PID control algorithm. We also built a GUI-based integrated control system to help users easily design luminous texts or images on the plastic plate. Also, we conducted a performance test of the system to verify the punching speed and depth control of the pin holes on the plastic plate.

A Study of Custom Embroidered Souvenir Manufacturing System Development (맞춤형 자수기념품 제작시스템 개발에 관한 연구)

  • Jang, Saeyeob;Kim, Taejoo;Shin, Junhee;Jeong, Eunjin
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.2
    • /
    • pp.45-49
    • /
    • 2013
  • Instant custom embroidered souvenir manufacturing system was studied. Recently customers want to get individually specialized souvenir. We present a modular manufacturing system and implementation of image processing, conversion of punching data. The manufacturing system consist of main module, photographing module and U/I module. We can change the system easily through modularization. Image Processing was necessary for making punching data. We developed sketch typed image processing and image processing which used brightness. Brightness type is suitable for instant embroidered souvenir. This study showed that fusion of embroidery technology and image processing technology can make a new business successfully.

  • PDF

Development New Inverter System for Linkage Control of Punching M/C (Punching M/C의 연동 제어를 위한 새로운 Inverter System개발)

  • 조현섭
    • Proceedings of the KAIS Fall Conference
    • /
    • 2002.05a
    • /
    • pp.212-214
    • /
    • 2002
  • 본 논문에서는 기존 공정 Line중 TG Feed Back방식을 이용한 Control System은 매우 고가(高價)인 외산 TG임에도 불구하고 구동 Motor의 발열로 인하여 전압 검출부 Cabon Brush의 잦은 마모로 인한 오동작으로 작업의 문제점이 표출되어 생산성이 저하되고 품질 불만 및 불량품 발생으로 생산성에 큰 손실을 입고 있다. 이러한 문제점을 해결하기 위하여 본 연구에서는 새로운 Inverter Control System을 개발하였다. 여기에 따른 파급 효과는 제품의 생산성 향상과 소모성 부품의 수입 대처 및 부분적 제어시스템의 국산화 효과를 확보 할 수 있다.

Punching Shear Strength of the Void Transfer Plate (중공 전이 슬래브의 뚫림 전단 강도)

  • Han, Sang-Whan;Park, Jin-Ah;Kim, Jun-Sam;Im, Ju-Hyeuk;Park, Young-Mi
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.367-374
    • /
    • 2010
  • The transfer slab system is a structural system that transfers the loads from the upper shear wall structure to the lower columns. This is a costly system due to a very thick slab, and the relatively high cost can be mitigated by introducing voids in the slab. However, this system of flat plate containing voids is vulnerable to brittle failure caused by punching shear in vicinity of slab-column connection. Thus, the punching shear capacity of the void system is very important. However, the current code doesn't provide a clear design provision for the strength of slabs with a void section. In this study, experimental study was conducted to investigate the punching shear strength of the void slab system. The shear strength of the specimens was predicted by current code and previous researches. In result, the punching shear strength of the void system is determined as the least value calculated at critical section located a distance d/2 from the face of the column and the center of the void section using the effective area at critical section.

Punching Shear Strength of Slab-Column Interior Connection Considering Anchorage Performance of Shear Reinforcements (전단보강재의 정착성능을 고려한 슬래브-기둥 내부접합부의 뚫림전단강도)

  • Jung, Hyung-Suk;Choi, Hyun-Ki;Chung, Joo-Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.51-58
    • /
    • 2022
  • Flat plate slab is cost-efficient structural system widely used in high rise building, apartment and parking garages. But flat plate-column connections are so weak against punching shear failure that it may cause collapse of overall structure. In this study, spiral type shear reinforcement which increases the shear strength and ductility of the plate-column connection and has good workability was proposed. And experimental test was performed to verify the punching shear capacity of spiral type shear reinforcement. The current code does not accurately estimate the punching shear strength of slab-column connection with shear reinforcement because slab is so slender that punching failure may occurred before shear reinforcement reached yield stress. Therefore modified equation of ACI code for punching shear strength was proposed base on finite element analysis using LUSAS program, and data analysis from CEB-FIP database.

The Development of Momentum Conversion Type Micro Punch System using Elastic Collision (탄성충돌을 이용한 운동량 보존형 마이크로 펀치 시스템의 개발)

  • 장인배;장현철;최근형;김병희;김현영
    • Transactions of Materials Processing
    • /
    • v.12 no.2
    • /
    • pp.128-133
    • /
    • 2003
  • In this study, the momentum conservation type punching mechanism for micropunching system was developed to avoid the punch failure in the misaligned status between the punch and die. The punching energy can be precisely controlled by the falling height of the projectile mass and the intermediata mass, which contacts with the punch, transmit the energy to the punch with the same contact condition. The potential energy of the projectile mass is converted to kinetic energy at the light weight punch that the projection speed into the sheet metal workpiece can be accelerated. The butt formation characteristics for the alignment condition and for the projection speeds are investigated to verify the feasibility of the proposed punching mechanism.

Development of Hybrid Machining System and Hybrid Process Technology for Ultra-fine Planing and Micro Punching (초정밀 평삭가공과 마이크로 펀칭가공을 위한 하이브리드 가공장비 및 공정기술 개발)

  • Kim, Han-Hee;Jeon, Eun-Chae;Cha, Jin-Ho;Lee, Je-Ryung;Kim, Chang-Eui;Choi, Hwan-Jin;Je, Tae-Jin;Choi, Doo-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.10-16
    • /
    • 2013
  • Ultra-fine planing and micro punching are separately used for improving surface roughness and machining dot patterns, respectively, of metal molds. If these separate machining processes are applied for machining of identical molds, there could be an aligning mismatch between the machine tool and the mold. A hybrid machining system combining ultra-fine planing and micro punching was newly developed in this study in order to solve this mismatch; hybrid process technology was also developed for machining dot patterns on a mirror surface of a metal mold. The hybrid machining system has X, Y, and Z axes, and a cam axis for ultra-fine planing. The cam axis and attachable and removable solenoid actuators for micro punching can make large and small sizes of dot patterns, respectively. Ultra-fine planing was applied in the first place to improve the surface roughness of a metal mold; the measured surface roughness was about 20nm. Then, micro punching was applied to machine dot patterns on the same mold. It was possible to control the diameter of the dot patterns by changing the input voltage of the solenoid actuator. Before machining, severe inhomogeneous plastic deformation around the machined dot patterns was also removed by annealing heat treatment. Therefore, it was verified that metal molds with dots patterns for optical products can be machined using a hybrid machining system and the hybrid process technology developed in this study.

Accurate theoretical modeling and code prediction of the punching shear failure capacity of reinforced concrete slabs

  • Rajai Z. Al-Rousan;Bara'a R. Alnemrawi
    • Steel and Composite Structures
    • /
    • v.52 no.4
    • /
    • pp.419-434
    • /
    • 2024
  • A flat slab is a structural system where columns directly support it without the presence of beam elements. However, despite its wide advantages, this structural system undergoes a major deficiency where stresses are concentrated around the column perimeter, resulting in the progressive collapse of the entire structure as a result of losing the shear transfer mechanisms at the cracked interface. Predicting the punching shear capacity of RC flat slabs is a challenging problem where the factors contributing to the overall slab strength vary broadly in their significance and effect extent. This study proposed a new expression for predicting the slab's capacity in punching shear using a nonuniform concrete tensile stress distribution assumption to capture, as well as possible, the induced strain effect within a thick RC flat slab. Therefore, the overall punching shear capacity is composed of three parts: concrete, aggregate interlock, and dowel action contributions. The factor of the shear span-to-depth ratio (a_v/d) was introduced in the concrete contribution in addition to the aggregate interlock part using the maximum aggregate size. Other significant factors were considered, including the concrete type, concrete grade, size factor, and the flexural reinforcement dowel action. The efficiency of the proposed model was examined using 86 points of published experimental data from 19 studies and compared with five code standards (ACI318, EC2, MC2010, CSA A23.3, and JSCE). The obtained results revealed the efficiency and accuracy of the model prediction, where a covariance value of 4.95% was found, compared to (13.67, 14.05, 15.83, 19.67, and 20.45) % for the (ACI318, CSA A23.3, MC2010, EC2, and JSCE), respectively.

Flexural and Punching Behaviors of Concrete Strengthening with FRP Sheets and Steel Fibers under Low-Velocity Impact Loading (FRP 시트 및 강섬유 보강 콘크리트의 저속 충격에서의 휨 및 펀칭 파괴 거동)

  • Min, Kyung-Hwan;Shin, Hyun-Oh;Yoo, Doo-Yeol;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.31-38
    • /
    • 2011
  • In this study, in order to observe the behaviors of fiber reinforced polymer (FRP) strengthened and steel fiber reinforced concrete specimens for impact and static loads, flexural and punching tests were performed. For the one-way flexural and two-way punching tests, concrete specimens with the dimensions of $50{\times}100{\times}350$ mm and $50{\times}350{\times}350$ mm were fabricated, respectively. The steel fiber reinforced concrete specimens showed much enhanced resistance on two-way punching of static and impact loads. In addition the FRP strengthening system provided the outstanding performance under a punching load. Because of a large tensile strength and toughness of ultra high performance concrete (UHPC), the UHPC specimens retrofitted with FRP showed marginally enhanced strength and energy dissipating capacity.