• Title/Summary/Keyword: Punching capacity

Search Result 80, Processing Time 0.024 seconds

Development of One Layer Loading Hanger Device for Flue-cured Tobacco (수확 담배잎을 엮는 단선형 행거 엽편장치 개발)

  • 김용암;류명현;백종운
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.22 no.1
    • /
    • pp.58-60
    • /
    • 2000
  • In order to improve the loading efficiency in bulk dryer for the flue-cured tobacco leaves, a new hanger device was developed. It consists of two layers frame, in which large volume of the harvested leaves could be simply loaded. As the results of experiments with new hanger device, labor hours for loading could be saved by 34 % as compared with those in conventional 3 layers hanger, and loading capacity increased by 36%. The weight of hanger could be also reduced by 0.6kg compared to conventional 3.4kg, showing possibility of cost reduction for the developed hanger device with saved number of punching the rolled steel panels.

  • PDF

The Effect of Anchorage with Shear Reinforcement in Flat Plate System (플랫 플레이트 구조에서 전단보강체의 정착성능에 따른 전단보강효과)

  • Choi, Chang-Sik;Bae, Baek-Il;Choi, Yun-Cheul;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.667-675
    • /
    • 2012
  • Flat plate are being used more in buildings requiring a high level of technical installations or in buildings needing changeable room arrangements during their life time such as office buildings. The main problem in flat plate is its weak resistance against a punching failure at its slab-column connections. Therefore, in this research, an experimental study on full-scale interior slab-column connection was performed. Three types of shear reinforcements were tested to prevent brittle punching shear failure that could lead to collapse of the structure. A series of four flat plate specimens including a specimen without shear reinforcement and three specimens with shear reinforcements were tested. The slabs were tested up to failure using monotonic vertical shear loading. The presences of the shear reinforcements substantially increased punching shear capacity and ductility of the interior slabcolumn connections. The test results showed that a slab that did not have enough bond length failed before shear reinforcement yielded due to anchorage slip. Also, FEM analyses were performed to study an effect of slab thickness and concrete compressive strength on the flat plate slab. The analytical study results were used to propose a method to calculate performance capacity of shear reinforcement in slab-column connection.

Experimental Study on Strengthening Transverse Joints between Precast Concrete Slabs

  • Park, Jong-Jin;Cheung, Jin-Hwan;Shin, Su-Bong
    • KCI Concrete Journal
    • /
    • v.12 no.2
    • /
    • pp.45-54
    • /
    • 2000
  • Precast R.C. slabs are being used widely for the construction of bridge structures due to their simplicity in construction processes. However, one of the disadvantages in precast R.C. slabs is the existence of transverse joints between two precast slabs. The transverse joints are structurally fragile and the task of strengthening the joints is difficult one due to their structural discontinuity. The aim of this study was to improve the behavior of transverse joints between precast R.C. slabs by introducing prestress with external cables. Three steel-concrete composite bridge specimens, which were prestressed with the external cables anchored on steel girders, were fabricated in the laboratory. Both pretension and post-tension methods were applied to introduce prestressing on the concrete slab with a straight tendon arrangement. Static tests were conducted at service load and ultimate load test was performed to evaluate punching shear capacity of the transverse joint. In this paper, two prestressing methods were tested and their effects were evaluated with respect to the elastic behavior and ultimate loading capacity of the transverse joints.

  • PDF

Modification of Bearing Capacity Formula Considering Seam Tensile Strength of Geotextile in Soft Ground (연약지반에 포설된 Geotextile 봉합인장강도를 고려한 지지력 수정방정식)

  • Kim, Sun-Hak;Chae, Yu-Mi;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.59-67
    • /
    • 2019
  • With the increasing use of geotextile mats in dredging and reclaiming work and coastal construction, the assessment of bearing capacity in soft ground has become an important evaluation index for negligent accidents. The review of the allowable bearing capacity of soft ground consisting of inhomogeneous layers by laying geotextile mats and sand mat layers for soft ground improvement is generally compared with the equation of Meyerhof (1974) and Yamanouchi (1985). Mayerhof formula results in economic loss due to underestimation of bearing capacity, and Yamanouchi (1985) formula does not take into account negligent accidents for punching shear failure, so rather high bearing capacity is evaluated. It is considered that economic feasibility and stability will be ensured by proposing a modified formula to calculate the appropriate bearing capacity by applying the seam tensile strength of the geotextile mat to the design standard of soft ground improvement.

Bearing Characteristics of Micropile-raft by Failure Mode of Soil (지반파괴거동에 따른 마이크로파일-기초의 지지특성)

  • Hwang, Tae-Hyun;Shin, Jong-Ho;Huh, In-Goo;Kwon, Oh-Yeob
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.2
    • /
    • pp.13-25
    • /
    • 2015
  • With the increasing usages of micropile, several researchers have been studying the bearing characteristics of micropile or micropile-raft system. But most cases of research were focused on the bearing capacity of micropile-raft system on sand layer. And it was not considered that the bearing capacity of micropile-raft system was affected by the failure mode of soil and pile installation conditions. Thereby this study conducted the numerical analysis to estimate the bearing capacity of micropile-raft system on sand or silt layer with different shear failure mode. It was found that the bearing capacity of micropile-raft system installed in positive or negative angle was larger than that of the system installed in vertical angle, in the case of the sand layer undergoing the general shear failure. In the case of silt layer undergoing the punching shear failure, the bearing capacity of micropile-raft system installed only in negative angle was larger than that installed in vertical or positive angle. And the bearing capacity of foundation system in positive angle was similar to the vertical micropile-raft system.

Experimental Study on the Connection between RC Footing and Steel Pile according to Rail loads (철도하중을 고려한 기초구조물과 강관말뚝 연결부 거동에 관한 실험적 연구)

  • Kim, Jung-Sung;Kim, Dae-Sang;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1607-1614
    • /
    • 2011
  • As the connection between spread footing and pile is very important structural connection, it acts as the inter-loading medium to transfer the rail loads applied by superstructure to ground through the body pile of foundation. The experimental study is the method how to reinforce the pile cap between steel pile and footing utilizing perfobond plate with protruding keys. It were experimented on the compression punching tests and bending moment tests against the vertical loading and horizontal loadings acting on head of steel tube pipe. As a result, the tension capacity of the perfobond plate exhibited the superior performance due to the interlocking or dowel effects by the sheared keys of perfobond plate, and there were showing the sufficient strength and ductile capacity against the bending moment of horizontal loading tests. Therefore, it is judged that "the embedded method of perfobond plate in pile cap and footing" which is utilizing the shear connection of perfobond plate with protruding keys has a sufficient structural stability enough to be replaced with the current specification of reinforced method of pile cap with vertically deformed rebar against the vertical compression loads and bending moments that are able to occur in the combination structure of steel pile and the footing foundation.

  • PDF

Experimental studies on behaviour of bolted ball-cylinder joints under axial force

  • Guo, Xiaonong;Huang, Zewei;Xiong, Zhe;Yang, Shangfei;Peng, Li
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.137-156
    • /
    • 2016
  • Due to excellent advantages such as better illuminative effects, considerable material savings and ease and rapidness of construction, the bolted ball-cylinder joint which is a new type joint system has been proposed in space truss structures. In order to reveal more information and understanding on the behaviour of bolted ball-cylinder joints, full-scale experiments on eight bolted ball-cylinder joint specimens were conducted. Five joint specimens were subjected to axial compressive force, while another three joint specimens were subjected to axial tensile force. The parameters investigated herein were the outside diameter of hollow cylinders, the height of hollow cylinders, the thickness of hollow cylinders, ribbed stiffener and axial force. These joint specimens were collapsed by excessive deformation of hollow cylinders, punching damage of hollow cylinders, evulsion of bolts, and weld cracking. The strain distributions on the hollow cylinder opening were mainly controlled by bending moments. To improve the ultimate bearing capacity and axial stiffness of bolted ball-cylinder joints, two effective measures were developed: (1) the thickness of the hollow cylinder needed to be thicker; (2) the ribbed stiffener should be adopted. In addition, the axial stiffness of bolted ball-cylinder joints exhibited significant non-linear characteristics.

Minimum Thickness of Long Span RC Deck Slabs for Composite 2-girder Bridges Designed by KL-510 Load Model (KL-510 하중모형을 적용한 강합성 2거더교 RC 장지간 바닥판의 최소두께)

  • Park, Woo-Jin;Hwang, Hoon-Hee
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.72-78
    • /
    • 2014
  • The minimum thickness of long-span deck slab is proposed by checking the limit state according to the Korean highway bridge design code(limit state design). Both minimizing thickness and ensuring safety of deck slab are important design factors to increase a competitive price of the long span deck slabs. The required thicknesses for satisfying flexural capacity, preventing punching shear failure and limiting deflection were calculated by considering KL-510 load model which has increased total load compared to DB 24 from 432 kN to 510 kN. The results of the required thickness for various limit states were compared to propose the minimum thickness as a function of span length of deck slabs. The proposed minimum thickness is influenced by satisfying flexural capacity and limiting deflection. It turns out to be similar compared to the results of the previous study by ultimate strength design method even if the live load model was increased in total weights.

Numerical experimentation for the optimal design for reinforced concrete rectangular combined footings

  • Velazquez-Santilla, Francisco;Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel;Sandoval-Rivas, Ricardo
    • Advances in Computational Design
    • /
    • v.3 no.1
    • /
    • pp.49-69
    • /
    • 2018
  • This paper shows an optimal design for reinforced concrete rectangular combined footings based on a criterion of minimum cost. The classical design method for reinforced concrete rectangular combined footings is: First, a dimension is proposed that should comply with the allowable stresses (Minimum stress should be equal or greater than zero, and maximum stress must be equal or less than the allowable capacity withstand by the soil); subsequently, the effective depth is obtained due to the maximum moment and this effective depth is checked against the bending shear and the punching shear until, it complies with these conditions, and then the steel reinforcement is obtained, but this is not guaranteed that obtained cost is a minimum cost. A numerical experimentation shows the model capability to estimate the minimum cost design of the materials used for a rectangular combined footing that supports two columns under an axial load and moments in two directions at each column in accordance to the building code requirements for structural concrete and commentary (ACI 318S-14). Numerical experimentation is developed by modifying the values of the rectangular combined footing to from "d" (Effective depth), "b" (Short dimension), "a" (Greater dimension), "${\rho}_{P1}$" (Ratio of reinforcement steel under column 1), "${\rho}_{P2}$" (Ratio of reinforcement steel under column 2), "${\rho}_{yLB}$" (Ratio of longitudinal reinforcement steel in the bottom), "${\rho}_{yLT}$" (Ratio of longitudinal reinforcement steel at the top). Results show that the optimal design is more economical and more precise with respect to the classical design. Therefore, the optimal design presented in this paper should be used to obtain the minimum cost design for reinforced concrete rectangular combined footings.

Optimization for trapezoidal combined footings: Optimal design

  • Arnulfo Lueanos-Rojas
    • Advances in concrete construction
    • /
    • v.16 no.1
    • /
    • pp.21-34
    • /
    • 2023
  • This work presents a complete optimal model for trapezoidal combined footings that support a concentric load and moments around of the "X" and "Y" axes in each column to obtain the minimum area and the minimum cost. The model presented in this article considers a pressure diagram that has a linear variation (real pressure) and the equations are not limited to some cases. The classic model takes into account a concentric load and the moment around of the "X" axis (transverse axis) that is applied due to each column, i.e., the resultant force is located at the geometric center of the footing on the "Y" axis (longitudinal axis), and when the concentric load and moments around of the "X" and "Y" axes act on the footing is considered the uniform pressure applied on the contact surface of the footing, and it is the maximum pressure. Four numerical problems are presented to find the optimal design of a trapezoidal combined footing under a concentric load and moments around of the "X" and "Y" axes due to the columns: Case 1 not limited in the direction of the Y axis; Case 2 limited in the direction of the Y axis in column 1; Case 3 limited in the direction of the Y axis in column 2; Case 4 limited in the direction of the Y axis in columns 1 an 2. The complete optimal design in terms of cost optimization for the trapezoidal combined footings can be used for the rectangular combined footings considering the uniform width of the footing in the transversal direction, and also for different reinforced concrete design codes, simply by modifying the resisting capacity equations for moment, for bending shear, and for the punching shear, according to each of the codes.