• 제목/요약/키워드: Punching Process

검색결과 98건 처리시간 0.04초

금속 소재의 미세 홀 펀칭 시 전단 파괴 거동 연구 (A Study on Shear Fracture Behavior of Metal in Micro Hole Punching Process)

  • 유준환;임성한;주병윤;오수익
    • 소성∙가공
    • /
    • 제12권4호
    • /
    • pp.314-319
    • /
    • 2003
  • In the micro hole punching, the size and shape of burr and burnish zone are very important factors to evaluate quality of micro holes which depend on punch-die clearance, strain rate, workpiece material and etc. To get micro holes with small burr and wide burnish zone for industrial demands, not only the parametric study but also a study on fracture behavior in shear band are necessary. In this study, 100 $\mu$m, 25 $\mu$m micro holes in diameter were fabricated on brass (Cu63/Zn37) and SUS 316 foils as aspect ratio 1:1, and the characteristics of micro holes was investigated comparing with those of macro holes over several mm by scanning electron microscopic views and section views. Like macro hole, micro hole is also composed of 4 portions, rollover. burnish zone, fracture zone and burr, and it shows similar fracture behavior in shear band. But by high strain rate (10$^2$∼10$^3$s$^{-1}$ ) condition unlike that of macro hole fabrication and by the increment of relative grain size in the direction of the workpiece thickness, fracture zone is not observed.

반도체 레이저를 이용한 박판 버의 실시간 측정 (The realtime measurement of burrs on sheet metal using the semiconductor laser)

  • 홍남표;신홍규;김헌영;김병희
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.107-110
    • /
    • 2003
  • The sheet metal shearing process is normally used in the precision elements such as semi-conductor components. In precision elements, burrs usually reduce the quality of machined parts and cause interference, jamming and misalignment during assembly procedures and because of their sharpness, they can be safety hazard to personnel. Furthermore, not only burrs are hard to predict and avoid, but also deburring, the process of removing burrs, is time-consuming and costly. In order to get the burr-free parts, therefore, we developed the precise burr measuring system using the laser. Using the X-Y precious table, we used vertical measuring method. Through the laser measurement system, we gain the minute analog signal, so this signal was amplified by the electric circuit. Finally, we gained the realtime burr data using A/D converter, PC. By introducing the novel laser measuring method which employing vertical measurement mechanism, we could get fast and precious burr data. Through the experiments, the accuracy of the developed system is proved. The burr height measured during the punching process can be used for automatic deburring and in-situ aligning.

  • PDF

초미세 금속 박판 홀 어레이 가공 (Fabrication of Ultra Small Size Hole Array on Thin Metal Foil)

  • 임성한;손영기;오수익
    • 소성∙가공
    • /
    • 제15권1호
    • /
    • pp.9-14
    • /
    • 2006
  • In the present research, the simultaneous punching of ultra small size hole of $2\~10\;{\mu}m$ in diameter on flat rolled thin metal foils was conducted with elastic polymer punch. Workpiece used in the present investigation were the rolled pure copper of $3{\mu}m$ in thickness and CP titanium of 1.5fm in thickness. The metal foils were punched with the dies and arrays of circular and rectangular holes were made. The process set-up is similar to that of the flexible rubber pad farming or Guerin process. Arrays of holes were punched successfully in one step forming. The punched holes were examined in terms of their dimensions. The effects of the wafer die hole dimension and heat treatment of the workpiece on ultra small size hole formation of the thin foil were discussed. The process condition such as proper die shape, pressure, pressure rate and diameter-thickness ratio (d/t) were also discussed. The results in this paper show that the present method can be successfully applied to the fabrication of ultra small size hole away in a one step operation.

블랭킹 잔류응력에 의한 리드프레임 변형 수치해석을 위한 대격자 모델 (A Coarse Mesh Model for Numerical Analysis of Lead Frame Deformation Due to Blanking Residual Stress)

  • 김용연
    • 한국정밀공학회지
    • /
    • 제22권2호
    • /
    • pp.133-138
    • /
    • 2005
  • The deformation of sheet metal due to the residual stress during blanking or piercing process, is numerically simulated by means of a commercial finite element code. Two dimensional plain strain problem is solved and then its result is applied to the deformation analysis of the lead frame. The plain strain element is applied to the 2D problem to observe the Von Mises equivalent stress concentration at the both shearing edges. As the punch penetrates into the sheet material, the stress concentration generated on both edges is getting increased to be the shearing surface. The limits of the punching depth applied to the simulation is 16% and 24% of the sheet thickness for the plain strain element and the hexahedral element, respectively. The hexahedral element and the limit of punching depth were applied to the deformation analysis of the lead frame for the blanking process. The FEM results for the lead deformation were very good agreement with the experimental ones. This paper shows that the coarse mesh has enabled to analyze the lead deformation generated due to the blanking mechanism. This simple approach to save the calculation time will be very effective to the design of the blanking tools in industries.

미세 펀칭 형상이 적층형 안테나 특성에 미치는 영향 (Effect of the shape of the micro punching on the stacked antennas characteristics)

  • 홍주표;한재남;정형욱;윤성만
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.71-74
    • /
    • 2007
  • Substitution of the stacked antenna for the normally pressed antenna in the mobile phone was tried for the purpose of decreasing its size. However, reduced size resulted in the difficulties obtaining the targeted characteristics with the bandwidth over 70MHz. The cross-section of the vias in the low temperature co-firing ceramics process was studied to find out effects on the bandwidth characteristics. Circular and rectangular cross-section of the via beneath different types of antenna patterns were simulated. Better bandwidth characteristics were acquired for the larger diameter of the circular section and for the rectangular section as the cross-section area increased. From the viewpoint of the shape of the cross-section, rectangular area showed better characteristics than the circular area with the same longest length in the cross-section.

  • PDF

장섬유강화 플라스틱 복합재의 압축성형 공정에 관한 연구 -점도에 미치는 니들펀칭의 영향- (A Study on Compression Molding Process of Long Fiber Reinforced Plastic Composites -Effect of Needle Punching on Viscosity-)

  • 송기형;조선형;이용신
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.184-187
    • /
    • 2002
  • Compression molding was specifically developed for replacement of metal components with composites. As the mechanical properties of the products are dependent on the separation and orientation, it is important to research the fiber mat structure and molding conditions. In this study, the effects of the fiber mat structure(NP: 5, 10, 25punches/$\textrm{cm}^2$) and the mold closure speed($\dot{\textrm{h}}$=0.1, 1, 10mm/min) on the viscosity of composites were discussed. The composites is treated as a Non-Newtonian power-law fluid. The parallel-plate plastometer is used and the viscosity is obtained from the relationship between the compression load and the thickness of the specimen.

  • PDF

미세 와이어의 버 없는 전단에 관한 연구 (Burrless shearing of the micro wire)

  • 김웅겸;홍남표;김헌영;김병희
    • 한국정밀공학회지
    • /
    • 제23권6호
    • /
    • pp.52-56
    • /
    • 2006
  • Punching tools like an electrodes are made by milling or etching or EDM. These methods had time consuming, low efficiency and air pollution. So, we have developed a shearing device which counter punching method for burrless cutting of micro wire. Using the straightened SUS304 wire with $200{\mu}m$ diameter, we confirmed the tendency of the shear plane for punch tools. It was impossible to completely remove the bun in the shearing process. In order to minimize the burr size and fine shear plane, we have accomplished the various experiment conditions such as the U-groove, the effect of the counter punch, shear angle and clearance. The results of the experiments show that indentation, slip plane and bent shape were related to the shear angle and clearance.

구멍 파단면 상태와 구멍확장률 간의 비선형 상관관계 분석 (Non-linear Correlation Between Hole Edge Condition and Hole Expansion Ratio)

  • 정병석;조우진;박시욱;정진욱;나현택;한흥남
    • 소성∙가공
    • /
    • 제30권2호
    • /
    • pp.74-82
    • /
    • 2021
  • Stretch-flangeability, which is the ability of sheet steels to be deformed into complex shapes, is a critical formability property in automobile body parts. In this study, the center-hole for hole expansion test, which is normally used to evaluate the stretch-flangeability of sheet steels, was prepared by both punching and electrical discharge machining (EDM) methods. Hole expansion ratio (HER) of punched hole was far lower than the HER of EDM drilled hole because of damage/crack in hole-edge due to punching process. The effect of hole-edge condition on HER was quantified by mechanical, fractographic and geometric factors. Based on these factors, the empirical equation used to determine HER for various sheet steels was derived using non-linear regression.

Effects of needle punching process and structural parameters on mechanical behavior of flax nonwovens preforms

  • Omrani, Fatma;Soulat, Damien;Ferreira, Manuela;Wang, Peng
    • Advances in aircraft and spacecraft science
    • /
    • 제6권2호
    • /
    • pp.157-168
    • /
    • 2019
  • The production of nonwoven fabrics from natural fibers is already expanding at an industrial level for simple curvature semi-structural part in the automotive industry. To develop their use for technical applications, this paper provides an experimental study of the mechanical behavior of flax-fiber nonwoven preforms. A comparison between different sets of carded needle-punched nonwoven has been used to study the influence of manufacturing parameters such as fibers' directions, the area and the needle punching densities. We have found that the anisotropy observed between both directions can be reduced depending on these parameters. Furthermore, this work investigates the possibility to form double curvature parts such as a hemisphere as well as a more complex shape such as a square box which possesses four triple curvature points. We propose a forming process adapted to the features of the nonwoven structure. The purpose is to determine their behavior under high stress during various forming settings. The preforming tests allowed us to observe in real time the manufacturing defects as well as the high deformability potential of flax nonwoven.