• Title/Summary/Keyword: Punching

Search Result 427, Processing Time 0.027 seconds

Comparison on the Behavior according to Shapes of Tension Web member in gap K-joints in Cold-formed Square Hollow Sections (인장웨브재 형태에 따른 각형강관 갭K형 접합부의 거동 비교)

  • Jeong, Sang Min;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.561-568
    • /
    • 2005
  • The object of this paper is to determine appropriateness for use of high-strength tensile bar as a tension web member. The gap K-joint of tensile bar types were compared with gap K-joint of square hollow section (SHS) types. For the same width-to-thickness ratio ($2{\gamma}=33.3$ ), tests were performed on four specimens of the SHS type and eight specimens of the tensile bar type. The comparison of capacity with the experimental results showed a capacity of the SHS type joint to be higher than that of the tensile bartype joint for the same brace-to-chord width ratio. Moreover, the capacity of the SHS type joints increased proportionally to the width ratio ${\beta}$), while tensile bar type joints increased as the tension width ratio (${\beta}2$). In failure mode, SHS-type specimens showed local buckling of the compression brace and plastic failure was observed between the tension brace and chord face, and with the tensile bar type specimens there appeared punching shear failure of the chord face at the toe of the connection plate. It is, therefore, concluded that width-to-thickness ratio should be lower than that of the hollow-section type and the relation between tension and compression width ratio should be considered.

Design of Flat Plate Systems Using the Modified Equivalent Frame Method (수정된 등가골조법을 이용한 플랫플레이트 시스템의 설계)

  • Park, Young-Mi;Oh, Seung-Yong;Han, Sang-Whan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.35-41
    • /
    • 2008
  • In general, flat plate systems have been used as a gravity load resisting system (GLRS) in building. Thus, this system should be constructed with lateral force resisting system (LFRS) such as shear walls and brace frames. GLRS should retain the ability to undergo the lateral drift associated with the LFRS without loss of gravity load carrying capacity. And flat plate system can be designed LFRS as ordinary moment frame with the special details. Thus, flat plate system designed as GLRS or LFRS should be considered internal forces (e.g., unbalanced moments) and lateral deformation generated in vicinity of slab joints render the system more susceptible to punching shear. ACI 318 (2005) allows the direct design method, equivalent frame method under gravity loads and allows the finite-element models, effective beam width models, and equivalent frame models under lateral loads. These analysis methods can produce widely different result, and each has advantage and disadvantages. Thus, it is sometimes difficult for a designer to select an appropriate analysis method and interpret the results for design purposes. This study is to help designer selecting analysis method for flat plate system and to verify practicality of the modified equivalent frame method under lateral loads. This study compared internal force and drift obtained from frame methods with those obtained from finite element method under gravity and lateral loads. For this purposes, 7 story building is considered. Also, the accuracy of these models is verified by comparing analysis results using frame methods with published experimental results of NRC slab.

Analysis of Stratified Rock under Vertical Load in Pile Foundation of Wind Turbine Using Circular Foundation Analysis Method with Equivalent Effective Width (등가유효폭을 가진 원형기초해석법을 이용한 풍력발전기 말뚝기초의 연직하중에 대한 층상암반 해석)

  • Kim, Dohan;Park, Sangyeol;Moon, Kyoungtae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2411-2425
    • /
    • 2013
  • In the design of pile foundation on the rock layer in the stratified structure with sedimentary and rock layers, the structural analysis of the stratified rock layer is required to determine the failure modes (flexural failure, punching shear failure or end bearing failure) and the bearing capacity of the rock layer. However, the existing usable Elastic Plate Analysis Method (EPAM) suggested by ACI committee 436 and Korean Code Requirements for Structural Foundation Design is very complex, and engineers have many difficulties in using it. Therefore, in this research, we proposed the relatively simple Circular Foundation Analysis Method (CFAM) with the concept and the equation of the equivalent effective width (radius) instead of the complex EPM, and the related equations of bending moment and shear force to be equal to the analysis results of EPAM. As a result, the proposed CFAM using the equivalent effective width (radius) is simple and convenient to use, and the analysis results of it are very good in their accuracies comparing those of EPAM and Finite Element Method.

Adhesive Strength and Electrochemical Properties of Li(Ni0.5Co0.2Mn0.3)O2Electrodes with Lean Binder Composition (바인더 함량에 따른 Li(Ni0.5Co0.2Mn0.3)O2 전극의 접착력 및 전기화학 성능에 관한 연구)

  • Roh, Youngjoon;Byun, Seoungwoo;Ryou, Myung-Hyun;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.3
    • /
    • pp.47-54
    • /
    • 2018
  • To maximize the areal capacity($mAh\;cm^{-2}$) of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$(NCM523) electrode with the same loading level of $15mg\;cm^{-2}$, three NCM523 electrodes with 4, 2, and 1 wt% poly(vinylidene fluoride)(PVdF) binder content are fabricated. Due to the delamination issue of electrode composite at the edge during punching process, the 1 wt% electrode is excluded for further evaluation. When the PVdF binder content decreases from 4 to 2 wt%, both adhesion strength and shear stress decrease from 0.4846 to $0.2627kN\;m^{-1}$ by -46% and from 3.847 to 2.013 MPa by -48%, respectively. Regardless of these substantial decline of mechanical properties, their initial electrochemical properties such as initial coulombic efficiency and voltage profile are almost the same. However, owing to high loading level, the 2 wt% electrode not only exhibits worse cycle performance than the 4 wt% electrode, but also cannot maintain its mechanical integrity only after 80 cycles. Therefore, if the binder content is reduced to increase the area capacity, the mechanical properties as well as the cycle performance must be carefully evaluated.

Research of Non-integeral Spatial Interpolation for Precise Identifying Soybean Location under Plastic Mulching

  • Cho, Yongjin;Yun, Yeji;Lee, Kyou-seung;Oh, Jong-woo;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.156-156
    • /
    • 2017
  • Most crop damages have been occurred by vermin(e.g., wild birds and herbivores) during the period between seeding and the cotyledon level. In this study, to minimize the damage by vermin and acquire the benefits such as protection against weeds and maintenance of water content in soil, immediately vinyl mulching after seeding was devised. Vinyl mulching has been generally covered with black color vinyl, that crop seeding locations cannot be detected by visible light range. Before punching vinyl, non-contact and non-destructive methods that can continuously determine the locations are necessary. In this study, a crop position detection method was studied that uses infrared thermal image sensor to determine the cotyledon position under vinyl mulch. The moving system for acquiring image arrays has been developed for continuously detecting crop locations under plastic mulching on the field. A sliding mechanical device was developed to move the sensor, which were arranged in the form of a linear array, perpendicular to the array using a micro-controller integrated with a stepping motor. The experiments were conducted while moving 4.00 cm/s speed of the IR sensor by the rotational speed of the stepping motor based on a digital pulse width modulation signal from the micro-controller. The acquired images were calibrated with the spatial image correlation. The collected data were processed using moving averaging on interpolation to determine the frame where the variance was the smallest in resolution units of 1.02 cm. For this study, the spline method was relatively faster than the other polynomial interpolation methods, because it has a lower maximum order of formulation when using a system such as the tridiagonal linear equation system which provided the capability of real-time processing. The temperature distribution corresponding to the distance between the crops was 10 cm, and the more clearly the leaf pattern of the crop was visually confirmed. The frequency difference was decreased, as the number of overlapped pixels was increased. Also the wave pattern of points where the crops were recognized were reduced.

  • PDF

Field Application of a Precast Concrete-panel Retaining Wall Adhered to In-situ Ground (원지반 부착식 판넬옹벽의 현장 적용성 평가)

  • Min, Kyoung-Nam;Lee, Jae-Won;Lee, Jung-Gwan;Kang, In-Kyu;Ahn, Tae-Bong
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.51-61
    • /
    • 2016
  • New building methods are needed to aid increased inner-city redevelopment and industrial construction. A particular area of improvement is the efficient use of cut slopes, with the minimization of associated problems. A retaining wall of precast panels can resist the horizontal earth pressure by increasing the shear strength of the ground and reinforcing it through contact with the panels. Precast panels allow quick construction and avoid the problem of concrete deterioration. Other problems to be solved include the digging of borrow pits, the disposal of material cut from the slope, and degradation of the landscape caused by the exposed concrete retaining wall.This study suggest the methods of improvement of an existing precast panel wall system by changing the appearance of the panels to that of natural rock and improving the process of adhering the panel to a vertical slope. The panels were tested in the laboratory and in the field. The laboratory test verified their specific strength and behavior, and the field test assessed the panels' ground adherence at a vertical cutting. Reinforcement of the cutting slope was also measured and compared with the results of 3D numerical analysis. The results of laboratory test, identified that the shear bar increase the punching resistance of panel. And as a results of test construction, identified the construct ability and field applicability of the panel wall system adhered to in-situ ground. In addition to that, extended measurement and numerical analysis, identified the long-term stability of panel wall system adhered to in-situ ground.

Hierarchical Finite-Element Modeling of SiCp/Al2124-T4 Composites with Dislocation Plasticity and Size-Dependent Failure (전위 소성과 크기 종속 파손을 고려한 SiCp/Al2124-T4 복합재의 계층적 유한요소 모델링)

  • Suh, Yeong-Sung;Kim, Yong-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.187-194
    • /
    • 2012
  • The strength of particle-reinforced metal matrix composites is, in general, known to be increased by the geometrically necessary dislocations punched around a particle that form during cooling after consolidation because of coefficient of thermal expansion (CTE) mismatch between the particle and the matrix. An additional strength increase may also be observed, since another type of geometrically necessary dislocation can be formed during extensive deformation as a result of the strain gradient plasticity due to the elastic-plastic mismatch between the particle and the matrix. In this paper, the magnitudes of these two types of dislocations are calculated based on the dislocation plasticity. The dislocations are then converted to the respective strengths and allocated hierarchically to the matrix around the particle in the axisymmetric finite-element unit cell model. The proposed method is shown to be very effective by performing finite-element strength analysis of $SiC_p$/Al2124-T4 composites that included ductile failure in the matrix and particlematrix decohesion. The predicted results for different particle sizes and volume fractions show that the length scale effect of the particle size obviously affects the strength and failure behavior of the particle-reinforced metal matrix composites.

Shear Performance of Post and Beam Construction by Pre-Cut Process (프리컷 방식을 적용한 기둥-보 공법의 수평전단내력)

  • Hwang, Kweonhwan;Park, Joo-Saeng;Park, Moon-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1-12
    • /
    • 2007
  • For the purpose of effective utilization of domestic second-grown larch as structural members, post and beam construction applying traditional construction to Japanese larch glulam members was adopted with processing by machine pre-cut method. In general, horizontal shear test by KS F 2154 is conducted to assess the horizontal shear properties of the wooden structure by post and beam construction. The frame was consisted of post and beam member with appropriate fasteners, and members have their own processed parts (notch, hole, etc.) that can be well-connected each other. The shear wall was consisted of the frame with screw-nail sheathed panel (OSB). The results of horizontal shear loading tests without vertical loads conducted on the frame and the shear wall structures, the maximum strengths were about 1.9 kN/m and about 9.7 kN/m, the shear rigidities were about 167 kN/rad, 8198 kN/rad, respectively. The strength proportion of the frame specimen was about 20% of the wall's and about 2% in initial stiffness. Nail failures are remarkable on the shear wall specimen with punching shears and shear failures. The shear load factor for the shear wall specimen by the method of Architectural Institute of Japan was 1.5, which was obtained by the bi-linear method. Loading method should be considered to obtain smooth load-deformation relationship. For the better shear performance of the structures, column base and post and beam connections and sheathed panel should be further examined as well.

Stability Analysis and Reliability Evaluation of the Pretensioned Soil Nailing System (프리텐션 쏘일네일링 시스템의 안정해석 및 신뢰도 분석)

  • 김홍택;강인규;박사원;고용일;권영호
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.105-127
    • /
    • 1999
  • Application of the soil nailing method is continuously extended in maintaining stable excavations and slopes. Occasionally, however, ground anchor support system may not be used because of space limitations in urban excavation sites nearby the existing structures. In this case, soil nailing system with relatively short length of nails could be efficiently adopted as an alternative method. The general soil nailing support system, however, may result in excessive deformations particularly in an excavation zone of the existing weak subsoils. Pretensioning the soil nails then, could play important roles in reducing deformations mainly in an upper part of the nailed-soil excavation system as well as improving local stability. In the present study, the analytical procedure and design technique are proposed to evaluate maximum pretension force and stability of the pretensioned soil nailing system. Also proposed are techniques to determine the required thickness of a shotcrete facing and to estimate probability of a failure against the punching shear. The predicted results are compared with the limited measurements obtained from the excavation site constructed by using the pretensioned soil nails. Based on the proposed procedure and technique, effects of the radius of a influence circle and dilatancy angle on the thickness of a shotcrete facing, bonded length and safety factors are analyzed. In addition, effects of the reduction of deformations expected by pretensioning of the soil nails are examined in detail throughout an illustrative example and FLAC$^{2D}$ program analysis.s.

  • PDF

The optimum media size and composition for sawdust culture of Lentinula edodes (Strain: JNM3022) (표고버섯(JNM3022) 톱밥재배에 적합한 배지조성과 배지크기)

  • Choi, Duck Soo;Jung, Kyung Ju
    • Journal of Mushroom
    • /
    • v.6 no.3_4
    • /
    • pp.131-137
    • /
    • 2008
  • These experiments were conducted to search for the optimum media size and composition for culture of Lentinula edodes (JNM3022). Considering the incubation period and the successful culturing rate, the optimum media size was length 25 $cm{\times}diameter$ 14 cm (weight 2.5 kg). The saturation moisture amount of Oak sawdust was 251 ml/100 g. It is a half of pine sawdust 495 ml/100 g. Considering the hypha growing speed and hypha density, the optimum media composition was Oak sawdust 80%+ wheat bran 20% and Oak sawdust 80%+ rice bran 20% In 10 treatments of media composition. The optimum moisture amount of media for growing Lentinula edodes (JNM3022) was 55%. Injection pipe with 20 holes in media was reduced the incubation periods to 11 days when 20cm length media and 32 days when 30cm length media compare to control. The best method for browning media surface was change temperature condition above $10^{\circ}C$ and punching the vinyl bag. This treat could shortened the browning periods to 54 days.

  • PDF