• Title/Summary/Keyword: Pump system

Search Result 2,893, Processing Time 0.027 seconds

Pump operation based on pressure sensors for the damage reduction of water distribution system (상수도관망의 피해저감을 위한 센서기반 펌프운영)

  • Kwon, Hyuk Jae;Kim, Hyeong Gi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.200-200
    • /
    • 2019
  • 본 연구에서는 실제 가압장 및 가압장후단부의 상수도관망에 발생가능한 수충격해석을 수행하고 신뢰성해석을 수행하여 파괴확률을 정량적으로 산정하였다. 이를 위해 가압장의 펌프운영조건을 다르게 적용하였고 관말단부의 압력센서를 이용하여 토출압을 선택적으로 운영하면 수충격의 규모도 작아지고 파괴확률도 대폭 줄어드는 것을 확인할 수 있었다. 가압장의 토출압을 선택적으로 운영하기 위해서는 관말단부에 필수적으로 충분한 수압이 존재해야하며 이를 위해서 실시간 모니터링이 가능한 압력계를 설치하게 된다. 이 압력계로부터 수신되는 데이터를 통하여 펌프의 운영이 이루어지고 최소한의 에너지 사용을 통해 효율을 증대하고 피해율도 저감하게 된다. 본 연구에서 개발된 센서기반 펌프운영시스템이 적용된 실제 상수도관망은 현재 가압장의 운영조건으로 24시간 75m의 펌프 토출압을 유지하고 있으며 관말단부의 수용가에 충분한 수압이 전달되고 있다. 가압장의 고압유지는 관말단부에 충분한 수압을 전달하기 위한 것이지만 상수도관망에서 누수와 시설물에 대한 많은 피해를 유발할 수 있다. 따라서 본 연구에서는 가압장의 펌프토출압을 75m와 60m로 선택적 운영을 할 수 있도록 프로그램을 개발하였다. 기존 가압장의 운영조건과 선택적 운영조건을 사용하여 수충격해석을 수행하였고 신뢰성해석모형을 사용하여 파괴확률을 정량적으로 산정할 수 있었다. 가압장의 운영조건을 최적화하여 효율은 증대하고 피해율을 저감할 수 있는 방법을 찾을 수 있었다. 이를 위해서 가압장의 인버터 설치는 물론이고 펌프의 최적운영을 위해 개발된 펌프운영 프로그램을 가압장 배전반에 장착하여 경제적인 운영이 될 수 있을 뿐만 아니라 실제 상수관망에서 과도한 수압으로 인해 발생할 수 있는 여러 가지 피해를 최소화할 수 있을 것으로 판단된다. 또한, 본 연구에서는 기존의 펌프장 토출압으로 운영되었을 때와 비교하여 에너지 절감율을 정량적으로 산정하여 비교분석하였다. 가압장 후단의 작은 마을을 대상으로 하여 절감된 전기요금은 적은 양이라 할 수 있겠으나 개발된 시스템을 전국에 적용한다면 에너지 절감으로 인한 경제적 파급효과는 크다고 할 수 있다.

  • PDF

Sec-O-glucosylhamaudol mitigates inflammatory processes and autophagy via p38/JNK MAPK signaling in a rat neuropathic pain model

  • Oh, Seon Hee;Kim, Suk Whee;Kim, Dong Joon;Kim, Sang Hun;Lim, Kyung Joon;Lee, Kichang;Jung, Ki Tae
    • The Korean Journal of Pain
    • /
    • v.34 no.4
    • /
    • pp.405-416
    • /
    • 2021
  • Background: This study investigated the effect of intrathecal Sec-O-glucosylhamaudol (SOG) on the p38/c-Jun N-terminal kinase (JNK) signaling pathways, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-related inflammatory responses, and autophagy in a spinal nerve ligation (SNL)-induced neuropathic pain model. Methods: The continuous administration of intrathecal SOG via an osmotic pump was performed on male Sprague-Dawley rats (n = 50) with SNL-induced neuropathic pain. Rats were randomized into four groups after the 7th day following SNL and treated for 2 weeks as follows (each n = 10): Group S, sham-operated; Group D, 70% dimethylsulfoxide; Group SOG96, SOG at 96 ㎍/day; and Group SOG192, SOG at 192 ㎍/day. The paw withdrawal threshold (PWT) test was performed to assess neuropathic pain. Western blotting of the spinal cord (L5) was performed to measure changes in the expression of signaling pathway components, cytokines, and autophagy. Additional studies with naloxone challenge (n = 10) and cells were carried out to evaluate the potential mechanisms underlying the effects of SOG. Results: Continuous intrathecal SOG administration increased the PWT with p38/JNK mitogen-activated protein kinase (MAPK) pathway and NF-κB signaling pathway inhibition, which induced a reduction in proinflammatory cytokines with the concomitant downregulation of autophagy. Conclusions: SOG alleviates mechanical allodynia, and its mechanism is thought to be related to the regulation of p38/JNK MAPK and NF-κB signaling pathways, associated with autophagy during neuroinflammatory processes after SNL.

Relationship and Characteristics of PM10 and Endotoxin Concentrations in Windowless Poultry Houses in South Korea (일부 밀폐형 무창계사에서 발생하는 PM10 및 엔도톡신의 특성 및 연관성 분석)

  • Kim, Hyocher;Sin, Sojung;Kim, Kyungsu;Jung, Wongeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.31 no.4
    • /
    • pp.331-341
    • /
    • 2021
  • Objectives: The aim of this study was to evaluate the concentrations and relationships of coarse particles with a diameter of 10 ㎛ (PM10) with endotoxins according to the time of measurement in windowless poultry houses. Methods: In this study, measurement was performed on ten windowless poultry houses with a vertically integrated system from July to November. PM10 was measured using personal environmental monitors and polytetrafluoroethylene (PTFE) filters with a 4 L/min-calibrated pump in selected sampling locations (two near the door and two near an exhaust fan). The endotoxin on PTFE filter was analyzed by the LAL turbidimetric method. Results: The range of geometric mean concentrations of PM10 and endotoxins for each of the 38 samples were 0.12-3.30 mg/m3 and 11.9-3553.66 EU/m3, respectively. PM10 and endotoxin concentrations varied by farm, increasing with the decrease in ventilation. The range of the coefficient of determination between PM10 and endotoxin was 0.0009-0.9249. As the atmospheric temperature decreased, it was confirmed that the concentrations of PM10 and endotoxin increased because the volume of ventilation was decreased. Conclusions: Endotoxins were more affected by time of measurement and ventilation than PM10, which means that endotoxins could be an important indicator for intervention programs for improvement of indoor environments.

Heat transfer performance of a helical heat exchanger depending on coil distance and flow guide for supercritical cryo-compressed hydrogen

  • Cha, Hojun;Choi, Youngjun;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.62-67
    • /
    • 2022
  • Liquid hydrogen (LH2) has a higher density than gaseous hydrogen, so it has high transport efficiency and can be stored at relatively low pressure. In order to use efficient bulk hydrogen in the industry, research for the LH2 supply system is needed. In the high-pressure hydrogen station based on LH2 currently being developed in Korea, a heat exchanger is used to heat up supercritical hydrogen at 700 bar and 60 K, which is pressurized by a cryogenic high-pressure pump, to gas hydrogen at 700 bar and 300 K. Accordingly, the heat exchanger used in the hydrogen station should consider the design of high-pressure tubes, miniaturization, and freezing prevention. A helical heat exchanger generates secondary flow due to the curvature characteristics of a curved tube and can be miniaturized compared to a straight one on the same heat transfer length. This paper evaluates the heat transfer performance through parametric study on the distance between coils, guide effect, and anti-icing design of helical heat exchanger. The helical heat exchanger has better heat transfer performance than the straight tube exchanger due to the influence of the secondary flow. When the distance between the coils is uniform, the heat transfer is enhanced. The guide between coils increases the heat transfer performance by increasing the heat transfer length of the shell side fluid. The freezing is observed around the inlet of distribution tube wall, and to solve this problem, an anti-icing structure and a modified operating condition are suggested.

Development and verification of an underground crop harvester simulation model for potato harvesting

  • Md. Abu Ayub Siddique;Hyeon-Ho Jeon;Seok-Pyo Moon;Sang-Hee Lee;Jang-Young Choi;Yong-Joo Kim
    • Journal of Drive and Control
    • /
    • v.21 no.1
    • /
    • pp.38-45
    • /
    • 2024
  • The power delivery is crucial to designing agricultural machinery. Therefore, the tractor-mounted potato harvester was used in this study to conduct the field experiment and analyze the power delivery for each step. This study was focused on an analysis of power delivery from the engine to the hydraulic components for the tractor-mounted harvester during potato harvesting. Finally, the simulation model of a self-propelled potato harvester was developed and validated using the experimental dataset of the tractor-mounted potato harvester. The power delivery analysis showed that approximately 90.22% of the engine power was used as traction power to drive the tractor-mounted harvester, and only 5.10% of the engine power was used for the entire hydraulic system of the tractor and operated the harvester. The statistical analysis of the simulation and experimental results showed that the coefficient of determinations (R2) ranged from 0.80 to 0.96, which indicates that the simulation model was performed with an accuracy of over 80%. The regression models were correlated linearly with the simulation and experimental results. Therefore, we believe that this study could contribute to the design methodology and performance test procedure of agricultural machinery. This basic study would be helpful in the design of a self-propelled potato harvester.

Improvement in Sensitivity by Increasing the Frequency of SAW Sensors for DNA Detection (DNA 측정용 SAW 센서의 주파수 증대에 의한 감도향상)

  • Sakong, Jung-Yul;Kim, Jae-Ho;Lee, Soo-Suk;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.42-47
    • /
    • 2007
  • In this paper. we have studied improvement in sensitivity by increasing the frequency of SAW sensors for detecting the immobilization and hybridization of DNA. The sensor consists of twin SAW delay lines operating at 200MHz, a sensing channel and a reference channel. fabricated on $36^{\circ}$ rotated Y-cut X-propagation $LiTaO_3$ crystals. The optimum concentration of probe and target DNA was decided for the improvement of detection mechanism. and digital syringe pump system was used to reduce the human errors. The hybridization between immobilized probe DNA and target DNA on the gold-coated delay line results in mass loading on the delay line of the sensing channel. Thus, the relative frequency change was monitored in relation to the mass loading. The measurement results showed a good response of the sensor to the DNA hybridization with a maximum sensitivity level up to 0.066ng/m1/Hz.

Evaluation of the Biodurability of Polyurethane-Covered Stent Using a Flow Phantom

  • Dong Hyun Kim;Sung-Gwon Kang;Jung Ryul Choi;Ju Nam Byun;Young Chul Kim;Young Moo Ahn
    • Korean Journal of Radiology
    • /
    • v.2 no.2
    • /
    • pp.75-79
    • /
    • 2001
  • Objective: To evaluate the biodurability of the covering material in retrievable metallic stents covered with polycarbonate polyurethane. Materials and Methods: Using a peristaltic pump at a constant rate of 1ml/min, bile was recirculated from a reservoir through a long tube containing four stents. Each of these was removed from the system every two weeks and a radial tensile strength test and scanning electron microscopy (SEM) were performed. Each stent, removed at 2, 4, 6 and 8 weeks, was compared with a control stent not exposed to bile juice. Results: Gross examination showed that stents were intact at 2 weeks, but at 4, 6 and 8 weeks cracks were observed. The size of these increased gradually in accordance with the duration of exposure, and at 8 weeks several large holes in the polyurethane membrane were evident. With regard to radial tensile strength, extension and peak load at break were 84.47% and 10.030 N/mm, 54.90% and 6.769 N/mm, 16.55% and 2.452 N/mm, 11.21% and 1.373 N/mm at 0, 2, 4 and 6 weeks, respectively. Scanning electron microscopy at 2 weeks revealed intermittent pitting and cracking, and examination at 4, 6 and 8 weeks showed that the size of these defects was gradually increasing. Conclusion: When the polyurethane membrane was exposed to bile, biodegradation was first observed at week two and increased gradually according to the duration of exposure.

  • PDF

Analysis of load data for developing a self-propelled underground crop harvester during potato harvesting

  • Min Jong Park;Seung Min Baek;Seung Yun Baek;Hyeon Ho Jeon;Wan Soo, Kim;Ryu Gap, Lim;Yong Joo Kim
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.845-855
    • /
    • 2022
  • The purpose of this study is to develop a self-propelled underground crop harvester and its performance was evaluated by measuring the load during actual potato harvesting operations. This study was conducted at a constant working speed of 1 km·h-1. A load measurement system was installed to measure the actual load and the required working power was analyzed. A hydraulic pressure sensor was also installed to measure the hydraulic pressure. The required hydraulic power was calculated using the hydraulic pressure and flow rate. The results showed that the engine speed, torque, and power during harvesting operation were in the range of 845 - 1,423 rpm, 95 - 228 Nm, and 9 - 31 kW, respectively. Traction power, excluding the hydraulic pump of the tractor and power take-off (PTO) output, was in the range of 9 - 28 kW, and it was confirmed that it occupies a ratio of 16.2 to 50% of the engine rated output. The engine can supply the minimum required traction power to move the vehicle. This means that the engine used in this study could be down-sized to be suitable for an underground crop harvester. In this study, the gear stages of the tractor were not considered. This research thus shows the possibility of developing a self-propelled underground crop harvester.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2010 (설비공학 분야의 최근 연구 동향 : 2010년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo-Young;Choi, Jong-Min;Kim, Su-Min;Kwon, Young-Chul;Baik, Yong-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.449-469
    • /
    • 2011
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering during 2010. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery, and new and renewable energy. Various topics were presented in the field of general thermal and fluid flow. Research issues mainly focused on the thermal reliability of axial fan and compressor in the field of fluid machinery. Studies on the design of ground source heat pump systems and solar chemical reactors were executed in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (3) Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and CO2 were studied. Performance improvement of refrigeration systems are tried applying various ideas of refrigerant subcooling, dual evaporator with hot gas bypass control and feedforward control. The hybrid solar systems combining the solar collection devices with absorption chillers or compression heat pumps are simulated and studied experimentally as well to improve the understanding and the feasibility for actual applications. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. Various studies on heating and cooling systems, HVAC facilities, indoor air environments and energy resources were carried to improve the maintenance and management of building service equipments. In the field of heating and cooling systems, papers on a transformer cooling system, a combined heat and power, a slab thermal storage and a heat pump were reported. In the field of HVAC facilities, papers on a cooling load, an ondol and a drying were presented. Also, studies on HVAC systems using unutilized indoor air environments and energy resources such as air curtains, bioviolence, cleanrooms, ventilation, district heating, landfill gas were studied. (5) In the field of architectural environment and energy, studies of various purposes were conducted such as indoor environment, building energy, renewable energy and green building. In particular, renewable energy and building energy-related researches have mainly been studied reflecting the global interest. In addition, many researches which related the domestic green building certification of school building were performed to improve the indoor environment of school.

Stabilizing Soil Moisture and Indoor Air Quality Purification in a Wall-typed Botanical Biofiltration System Controlled by Humidifying Cycle (가습 주기에 따른 벽면형 식물바이오필터의 토양 수분 안정화 및 실내공기질 정화)

  • Lee, Chang Hee;Choi, Bom;Chun, Man Young
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.605-617
    • /
    • 2015
  • The ultimate goal of this research is to develop a botanical biofiltration system that combines a green interior, biofiltering, and automatic irrigation to purify indoor air pollutants according to indoor space and the size of biofilter. This study was performed to compare the stability of air flow characteristics and removal efficiency (RE) of fine dust within a wall-typed (vertical) botanical biofilter depending on humidifying cycle and to investigate RE of volatile organic compounds (VOCs) by the biofilter. The biofilter used in this experiment was designed as an integral form of water metering pump, water tank, blower, humidifier, and multi-level planting space in order to be suitable for indoor space utilization. As a result, relative humidity, air temperature, and soil moisture content (SMC) within the biofilter showed stable values regardless of three different humidifying cycles operated by the metering pump. In particular, SMCs were consistently maintained in the range of 27.1-29.7% during all humidifying cycles; moreover, a humidifying cycle of operating for 15 min and pausing for 45 min showed the best horizontal linear regression (y = 0.0008x + 29.09) on SMC ($29.0{\pm}0.2%$) during 120 hour. REs for number of fine dust (PM10) and ultra-fine dust (PM2.5) particles passed through the biofilter were in the range of 82.7-89.7% and 65.4-73.0%, respectively. RE for weight of PM10 passed through the biofilter was in the range of 58.1-78.9%, depending on humidifying cycle. REs of xylene, ethyl benzene, total VOCs (TVOCs), and toluene passed through the biofilter were in the range of 71.3-75.5%, while REs of benzene and formaldehyde (HCHO) passed through the biofilter were 39.7% and 44.9%, respectively. Hence, it was confirmed that the wall-typed botanical biofilter suitable for indoor plants was very effective for indoor air purification.