• 제목/요약/키워드: Pump sump

검색결과 33건 처리시간 0.026초

CFD에 의한 펌프장 Sump내 유동해석 (Flow Analysis around within Sump in a Pump Station using by the CFD)

  • 노형운;김재수;서상호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.89-94
    • /
    • 2002
  • n general, the function of intake structure, whether it be a open channel, a fully wetted tunnel, a sump or a tank, is to supply an evenly distributed flow to a pump station. An even distribution of flow, characterized by strong local flow, can result in formation of surface or submerged vortices, and with certain low values of submergence, may introduce air into pump, causing a reduction of capacity and efficiency, an increase in vibration and additional noise. Uneven flow distribution can also increase or decrease the power consumption with a change in total developed head. To avoid these sump problems pump station designers are considered intake structure dimensions, such as approaching upstream, baffle size, sump width, width of pump cell and so on. From this background, flow characteristics of intake within sump are investigated numerically to obtain the optimal sump design data. The sump model is designed in accordance with HI code.

  • PDF

펌프장에서 Sump내 흡입구 주위의 유동해석 (Flow Analyses around Intake within Sump in a Pump Station)

  • 노형운;김재수;서상호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.597-600
    • /
    • 2002
  • In general, the function of intake structure, whether it be a open channel, a fully wetted tunnel, a sump or a tank, is to supply an evenly distributed flow to a pump station. An even distribution of flow, characterized by strong local flow, can result in formation of surface or submerged vortices, and with certain low values of submergence, may introduce air into pump, causing a reduction of capacity and efficiency, an increase in vibration and additional noise. Uneven flow distribution can also increase or decrease the power consumption with a change in total developed head. To avoid these sump problems pump station designers are considered intake structure dimensions, such as approaching upstream, baffle size, sump width, width of pump cell and so on. From this background, flow characteristics of intake within sump are Investigated numerically to obtain the optimal sump design data. The sump model is designed in accordance with HI code.

  • PDF

펌프 흡입수조 모형시험에서의 수중와에 대한 유동해석 (Numerical Analysis of the Subsurface Vortices in the Pump Sump Models)

  • 김진영;정경남;김휴곤;김영학
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.593-597
    • /
    • 2005
  • In order to study the characteristics of the subsurface vortex the flow fields of the three pump sump models were analysed by the numerical simulation. The calculation results show that there are circulation flows in the pump sump model and maximum vorticity strength which make iso-surface from the wall to the pump inlet could be used for predicting the subsurface vortex generation. Also, the flow field for the sump model with anti-vortex devices simulated and the results shows that there is no vorticity value which make iso-surface from the sump wall to the pump inlet.

  • PDF

The effect of suction pipe leaning angle on the internal flow of pump sump

  • Lee, Youngbum;Kim, Kyung-Yup;Chen, Zhenmu;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권8호
    • /
    • pp.849-855
    • /
    • 2015
  • A better flow condition for the intake of pump is provided by the sump pump that connects the forebay to the intake of the pump station. If the suction sump is improperly shaped or sized, air-entraining vortices or submerged vortices may develop. These phenomena may greatly affect pump operation if vortices become sufficiently large. Moreover, any remaining vortices in the pump flow passage may result in an increase in the noise and vibration of the pump. Therefore, the vortices in the pump flow passage must be reduced to achieve good pump sump station performance. In this study, the effect of suction pipe leaning angle on the pump sump's internal flow is investigated. Additionally, a pipe type with an elbow shape is investigated. The results show that the air entraining vortices occur under the condition of a water level ratio H/D = 1.31 for each suction pipe type.

펌프장내 흡수정 설계 기준 (The Standard of Sump Design in Pump Station)

  • 노형운;오상현;이영호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.589-592
    • /
    • 2005
  • In general, the function of intake structure, whether it be a open channel, a fully wetted tunnel, a sump or a tank, is to supply an evenly distributed flow to a pump station. An even distribution of flow, characterized by strong local flow, can result in formation of surface or submerged vortices, and with certain low values of submergence, may introduce air into pump, causing a reduction of capacity and efficiency, an increase in vibration and additional noise. Unfortunately in order to design the sump station, the reasonable code or the standards weren't presented yet in Korea. Thus, some researchers had often referred the HI code, JSME code or CEN code to design the sump station. This study aims to prescribe the standard of sump design which were matched well the Korean pump station. Thus, the HI code and TSJ code would be interpreted fully to Korean language, the part of interpreted clauses of the western codes would be selected to compose the standard.

  • PDF

The Effect of Pump Intake Leaning Angle and Flow Rate on the Internal Flow of Pump Sump

  • Lee, Youngbum;Kim, Kyung-Yup;Chen, Zhenmu;Choi, Young-Do
    • 한국유체기계학회 논문집
    • /
    • 제20권1호
    • /
    • pp.74-80
    • /
    • 2017
  • Pump sump system or pumping stations are built to draw water from a source such as river and used for irrigation, thermal power plants etc. If pump sump is improperly shaped or sized, air entraining vortices or submerged vortices may develop. This may greatly affect pump operation if vortices grow to an appreciable extent. Moreover, the noise and vibration of the pump can be increased by the remaining of vortices in the pump flow passage. Therefore, the vortices in the pump flow passage have to be reduced for a good performance of pump sump station. In this study, the effect of pump intake leaning angle and flow rate on the pump sump internal flow has been investigated. There are three cases with different leaning angle. Moreover, a pipe type with elbow also has been studied. The flow rate with three classes of air entraining vortices has been examined and investigated by decreasing the water level. The result shows that the air entraining vortices easily occurs at the pump intake with large leaning angle. Moreover, the elbow type of the pump intake easily occurs air entraining vortices at the high flow rate (or velocity) in comparison to other pump intake type.

흡수정의 유동해석 (Flow analysis of the Sump Pump)

  • 정한별;노승희
    • 한국산학기술학회논문지
    • /
    • 제18권3호
    • /
    • pp.673-680
    • /
    • 2017
  • 흡수정은 댐이나 저수지에 저장된 물을 흡입하여 사용하는 설비이다. 흡입한 다량의 물은 화력 및 원자력 등의 대형 발전소의 냉각시스템에 사용된다. 특징으로 흡입 유량과 흡수정의 비가 작으면 흡입구 주변에서 유속이 증가한다. 이로 인해 와류나 선회류의 불균형 유동이 발생된다. 불균형 유동은 흡수정의 성능을 저하나 고장의 원인이 된다. 해결하기 위한 다양한 방법이 고안되고 있으나 최저수위 일 경우 정확한 해결 방법을 찾지 못하고 있다. 가장 효율적인 해결방법으로는 AVD를 설치하거나 관로를 길게하는 방법이 있다. 이렇게 설치된 구조물이 유동의 흐름을 균일하게 만들어 주기 때문이다. 본 논문에서는 관로의 길이와 AVD의 형태 변화에 따른 흡수정 내의 유동특성을 수치해석으로 분석한다. 수치해석을 위하여 수정의 흡입부, 섬프, 펌프의 3단계로 분리하여 모델링하였다. 격자는 해석의 정확도를 위해 흡입부는 비조밀, 흡수정과 AVD는 조밀하게 하였다. ANSYS ICEM-CFD 14.5를 이용하여 120~150만개의 격자를 생성하였고 Tetra grid와 Prism grid를 혼용하였다. 해석을 위해 상용 CFD 프로그램인 ANSYS CFX14.5의 SST 난류모델을 선정하였다. 조건으로 H.W.L 6.0m, L.W.L 3.5, Qmax 4.000 kg/s, Qavg 3.500 kg/s Qmin 2.500 kg/s로 설정하였다. 보텍스 각도와 속도분포로 해석한 결과는 다음과 같다. Ext E-type의 AVD를 설치한 흡수정이 최고수위 일때 합격하였다. 추후, Ext E-type을 기본으로 하여 최저수위일 때 만족하는 연구가 필요하다.

다중 흡수정을 갖는 펌프장 모델의 유동균일성 해석 (Numerical Analysis on the Flow Uniformity in a Pump Sump Model with Multi Pump Intake)

  • 최종웅;최영도;임우섭;이영호
    • 한국유체기계학회 논문집
    • /
    • 제12권4호
    • /
    • pp.14-22
    • /
    • 2009
  • The head-capacity curves for pumps developed by the pump manufacturer are based on tests of a single pump operating in a semi-infinite basin with no close walls or floors and with no stray currents. Therefore, flow into the pump intake is with no vortices or swirling. However, pump station designers relying on these curves to define the operating conditions for the pump selected sometimes meet the reductions of capacity and efficiency, as well as the increase of vibration and additional noise, which were caused by air-entered flow in the pump station. From this background, the authors are carrying out a systematic study on the flow characteristics of intakes within a sump of pump station model. Multi-intake sump model with anti-submerged vortex device basin is designed and the characteristics of submerged vortex is investigated in the flow field by numerical simulation. In this study, a commercial CFD code is used to predict the vortex generation in the pump station accurately. The analysed results by CFD show that the vortex structure and effect of anti-submerged vortex device are different at each pump intake channel.

PIV에 의한 펌프장 흡입수조의 자유표면에서 발생하는 와의 운동특성에 관한 연구 (A study on the Flow Characteristics of a Vortex originated in the Free Surface within a Sump in a Pump Station by PIV)

  • 최종웅;김범석;이현;김유택;이영호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.95-101
    • /
    • 2002
  • The head-capacity curves for pumps developed by the pump manufacturer are based on tests of a sin91e pump operating in a semi-infinite pool with no nearby walls or floors and no stray currents. Hence, flow into the pump suction is symmetrical with no vortices or swirling. Pump station designers rely on these curves to define the operating conditions for the pump selected. But various constraints such as size, cost, and limitations on storage time require walls, floors, and pump intakes to be close proximity to each other. From this background, the authors are carrying out a systematic study on the flow characteristics of intakes within a sump found within a sump of pump stations. Model pump intake basin is designed and PIV is adopted as a measuring tool to capture the instantaneous flow patterns. Special attention is paid to investigate the flow patterns near the free surface due to different clearances from back-wall to vertical intake pipe with bell mouse and without. Moreover, the locations and vorticities of the various types of vortices that were found in the examinations are discussed.

  • PDF

AN INVESTIGATION OF SURFACE VORTICES BEHAVIOR IN PUMP SUMP

  • Kang, Won-Tae;Shin, Byeong-Rog
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.592-595
    • /
    • 2011
  • A numerical investigation on a suction vortices, free vortices and subsurface vortices behavior in the model sump system with multi-intakes is performed A test model sump and piping system were designed based on Froude similitude for the prototype of the recommended structure layout by HI-9.B Standard for Pump Intake Design of the Hydraulic Institute. A numerical analysis of three dimensional multiphase flows through the model sump is performed by using the finite volume method of the CFX code with multi-block structured grid systems. A ${\kappa}-{\omega]$ ShearStressTransportturbulencemodelandthe Rayleigh-Plesset cavitation model are used for solving turbulence cavitating flow. From the numerical analysis, several types of vortices are reproduced and their formation, growing shedding and detailed vortex structures are investigated. To reduce abnormal vortices, an anti-vortex device is considered and its effect is investigated and discussed.

  • PDF