• Title/Summary/Keyword: Pump Pipeline System

Search Result 42, Processing Time 0.037 seconds

An analysis of water hammer in pipeline systems with pump (펌프관로계의 수격현상 해석)

  • 이명호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.92-99
    • /
    • 1998
  • Unsteady flow problems created by hydraulic transients in pipeline systems with pump are of significant importance because they can cause excessive pressure, cavitation, vibration and noise. In this paper, an analysis of transient flow for the pump pipelines is developed by means of the characteristic method. The calculated results of the program to simulate water hammer due to sudden valve closure in a simple pipeline are compared with those of the analytical method. Expecially the water hammer due to power failure in pump pipeline system with surge tank was simulated. As the results, both the upsurge and the downsurge along the pipeline are reduced.

  • PDF

Impulse response method for a centrifugal pump in pipeline systems (원심펌프 관로계에 대한 임펄스 응답법 적용 연구)

  • Hur, Jisung;Kim, Hyunjoon;Song, Yongsuk;Kim, Sanghyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.5
    • /
    • pp.481-489
    • /
    • 2016
  • Method of characteristic(MOC) has been widely used as a transient analysis technique for pressurized pipeline systems. There are substantial studies using MOC for the water hammer triggered through instantaneous valve closures, pump stoppage and pump startup for pipelines systems equipped with a centrifugal pump. Considering restrictions of MOC associated with courant number condition for complicated pipeline systems, an impulse response method(IRM) was developed in the frequency domain. this study implements the impact of centrifugal pump using transfer function in frequency domain approach. Using pump performance curve and the affinity law, this study formulated transfer functions which relate complex pressure head at upstream of pump system to that of downstream location. Simulations of simple reservoir-pump-valve system using IRM with formulated transfer function were similar to those obtained through MOC.

REDUCTION OF PRESSURE RIPPLES USING A PARALLEL LINE IN HYDRAULIC PIPELINE

  • KIM K. H.;JANG J. S.;JUNG D. S.;KIM H. E.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.65-70
    • /
    • 2005
  • Pressure ripples, which are inevitably generated by a fluctuation of flow rate caused by a pump mechanism, include noises and vibrations in hydraulic pipeline. These noises and vibration deteriorate the stability and accuracy of hydraulic systems. The accumulator and hydraulic attenuator are normally used to reduce the pressure ripples. In this study, a parallel line is introduced to the hydraulic pipeline for the hydraulic system with a bent-axis piston pump as a method to reduce the pressure ripples. The dynamic characteristics of the hydraulic pipeline with a parallel line are analyzed by a transfer matrix in the frequency domain. The usefulness of the hydraulic pipeline with a parallel line was ascertained by experiment and simulation. The results from the experiment and simulation show that the hydraulic pipeline with a parallel line were effective in reducing the pressure ripples.

Flow and Pressure Ripple Characteristics of Hydrostatic Transmissions (유압전동장치의 유량 압력맥동 특성)

  • 김도태;윤인균
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.120-126
    • /
    • 2001
  • This study deals with a flow and pressure ripple characteristics for a hydrostatic transmission(HST) consisting of a vari-able axial piston pump connected in an open loop to a fixed displacement axial piston motor. These flow ripples produced by pump and motor in HST interacts with the source impedances of the pump or motor and dynamic characteristics of the connected pipeline, and results in a pressure ripples, Pressure ripples. Pressure ripples in HSP is major source of vibration, which can lead to fatigue failure of components and cause noise. In this paper, the flow ripples generated by a swash plate type axial piston pump or motor in HST are measured by making use of hydraulic pipeline dynamics and the measured pressure data at two points along the pipeline. By using the self-checking functions, the validity of the method us investigated by comparison with the measured and estimated pressure ripples at the halfway section of the pipeline, and good agreement is achieved.

  • PDF

Waterhammer in the Transmission Pipeline with an Air Chamber (에어챔버가 설치된 송수관로에서의 수격현상)

  • Kim, Gyeong-Yeop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.177-183
    • /
    • 2002
  • The field tests on the waterhammer were carried out in the pump pipeline system with an air chamber. The effects of the input variables and the design parameters for the air chamber were investigated by both the numerical calculations and the experiments. Because the waterhammer problems as a result of the pump power failure were the most important, these situations were carefully studied. Among the input variables used in the waterhammer analysis, the polytropic exponent, the discharge coefficient and the wavespeed had influence on the simulated results in that order, and were calibrated in comparison with the experimental results. As the initial air volume in a vessel increased, the period of waterhammer increased and the pressure variation decreased, resulting from the reduction of the rate of pressure change in the air chamber. Using smaller orifice in the bypass pipe, the pressure rise was suppressed in some degree and the pressure surge was dissipated more rapidly as time passed. The simulations were in fairly good agreement with the measured values until 1∼2 periods of waterhammer. Not only the maximum and minimum pressures in the pipe1ine but also those occurring times were reasonably predicted. The computer program developed in this study will be useful in designing the optimum parameters of an air chamber for the real pump pipeline system.

Method for Reduction of Pressure Ripples using the Parallel Pipeline in Fluid Pipeline (분지를 이용한 유압관로계의 압력맥동 저감 방안)

  • 이규원;장주섭;김경훈;윤영환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.299-302
    • /
    • 1997
  • The pressure ripples are inevitabilitily generated by a fluctuation of flow rate caused pump mechanism, which occur noises, vibrations, and affect a control performance in tluid pipeline. The method for reduction of pressure ripples has been normally used a accumulator which is installed near the pump generating the pressure ripples. This paper introduces the parallel pipeline as a method to reduce pressure ripples in tluid pipeline, and confirms the usefulness of it in reducing the pressure ripples as compared with the fluid pipeline with a accumulator using AMESim(Advanced Modeling Environment for Simulations) Software.

  • PDF

A Study on the Reduction in Pressure Ripples for a Bent-Axis Piston Pump by a Phase Interference (위상간섭을 이용한 사축식 액셜 피스톤 펌프의 압력맥동 감소에 대한 연구)

  • 김경훈;최명진;이규원;장주섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.103-110
    • /
    • 2004
  • Pressure ripples yield noise and vibration in hydraulic pipelines, which are inevitably generated by a fluctuation of flow rate in the pump mechanism, and such noise and vibration deteriorate the stability and accuracy of hydraulic systems. To reduce the pressure ripples, accumulator and hydraulic attenuator are normally used. In this study, parallel pipeline with a bent-axis piston pump is introduced to a hydraulic pipe system as a method for reducing the pressure ripples and using the transfer matrix method, the dynamic characteristics of the pipe system are analysed and compared with experimental results. The results show that the phase interference using parallel pipeline with a bent-axis piston pump is effective to reduce the pressure ripples in the hydraulic pipelines.

Reduction in Pressure Ripples for a Bent-Axis Piston Pump (사축식 액셜 피스톤 펌프의 압력맥동 감소)

  • Kim, Kyung-Hoon;Sohn, Kwon;Jang, Joo-Sup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.109-116
    • /
    • 2004
  • Bent-axis piston pump have been commonly used in hydraulic systems because of high pressure level, best efficiency, low shear force on pistons and low operating costs. The other side, they have a few demerits like that they have the relatively high number of moving parts and more discharge pressure ripples. Especially, the discharge pressure ripples bring about vibrations and noises in hydraulic system components such as connecting pipes and control valves, so that these deteriorate the stability and accuracy of the systems. Therefore, the hydraulic systems having the bent-axis piston pump require the methods to reduce the discharge pressure ripples. So, the purpose of this paper is to reduce the discharge pressure ripples by the phase interference of pressure wave and to develope the analysis model of the pumps to predict the discharge pressure ripples. In this paper, the analysis model of the bent-axis piston pump was developed using the AMESim software, and the reliability of that was verified by the comparison with the experimental results. The hydraulic pipeline with a parallel line was used as the method to generate the phase interference of pressure wave. the dynamics characteristics of the hydraulic pipeline with a parallel line were analyzed by a transfer matrix method. the usefulness of the phase interference of pressure wave was investigated through the experiment and simulation. The results from the experiment and simulation said that the phase interference of pressure wave by the hydraulic pipeline with a parallel line could reduce the discharge pressure wave of the pump well. The analysis model of the bent-axis piston pump developed in this paper and the method of the phase interference by the hydraulic pipeline with a parallel line are expected to be helpful to achieve the design of the pump and to reduce the discharge pressure wave of the pump effectively.

Numerical Study on the Waterhammer of PalDang Intake Pumping Station (팔당 취수펌프장의 수격현상에 관한 수치해석적 연구)

  • Kim, Kyung-Yup;Yu, Teak-In
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.4 s.9
    • /
    • pp.52-58
    • /
    • 2000
  • The numerical study on the waterhammer was carried out for the intake pumping station of the metropolitan water supply 6th stage project. Because the waterhammer problems as a result of the pump power failure were the most important, these situations were carefully investigated. The surge tank and the stand pipes effectively protected the tunnels md the downstream region of pipeline from the pressure surge. In case the moment of inertia of the pump and motor was above $5080\;kg{\cdot}m^2$, the column separation did not occur in the pipeline between the pumping station and the inlet of 1st tunnel. As the moment of inertia increased, the pressure surges decreased in the pipeline conveying raw water. The pump control valve was chosen as the main surge suppression device for the intake pumping station. After power failure, the valve disc should be rapidly closed in 2.5 seconds and controlled the final closure to 15 seconds by the oil dashpot. If the slamming happened to the pump control valve, there was some danger of this system damaging. As the reverse flow through the valve increased, the upsurge extremely increased.

  • PDF

Design of Multi-Regional Water Supply System Based on the Optimization Technique (최적화 기법을 이용한 광역상수도 관로시스템 설계)

  • Kim, Ju Hwan;Kim, Zong Woo;Park, Jae Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.95-112
    • /
    • 1999
  • In this research, it is proposed that optimization method is introduced and applied to the design of pipeline system in multi-regional water supply project, which has been constructed to settle the regional unbalance problems of available water resources. For the purpose, interface programs are developed to integrate linear programming model and KYPIPE model which is used for optimization and hydraulic analysis, respectively. The developed program is applied to the pipeline system design of multi-regional water supply project. The optimal diameters from the application of linear programming technique are compared with those from conventional method that is time-consuming and tedious trail and error process. Since the conventional design largely depends upon the experience of designers and the results of general hydraulic analysis, it can not be reasonable and consistent. The application of linear programming technique can make it possible to design pipeline system optimally by using same design factors of general hydraulic models. The model can select commercial discrete pipe diameter as optimal size by using pipe length as decision variables. The developed model is applied to Pohang multi-regional water supply system design with two different objective functions, which are initial construction cost and annual cost including electric cost. As results, it is calculated that the initial construction cost of 1,449,740 thousand won is saved and annual cost of 128,951 thousand won is saved for a year within study year. Also, the optimal site of pump station is selected on 5th pipe, which is located between the diverging junction to Kangdong(2) province and the diverging junction to Cheonbuk province. It is explained that pump cost is less than pipe cost in this application case study due to little pump station scale. In the case of water supply with large pump capacity, it is reasonal that the increase of pipe size is more efficient instead the increase of pump station capacity to save annual cost.

  • PDF