• Title/Summary/Keyword: Pulverized Coal

Search Result 187, Processing Time 0.03 seconds

Optimization of Operating Condition on Gasification of Ash-free Coal by Using the Sensitivity Analysis of ASPEN Plus (민감도 해석을 통한 무회분 석탄의 가스화 최적 운전조건 도출)

  • Park, Sung-Ho;Jeon, Dong-Hwan;Yun, Sung-Phil;Chung, Seok-Woo;Choi, Ho-Kyung;Lee, Si-Hyun
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.298-305
    • /
    • 2014
  • Ash included in coal can cause environmental pollution and it can decrease efficiency of mass and heat transfer by getting scorched and stick in the facilities operated at high temperature. To solve this problem, a feasibility study on pulverized coal fired power plant and integrated gasification combined cycle (IGCC) using the AFC (Ash-Free Coal) as well as the development to remove the ash from the coal was conducted. In this research, optimization of operating condition was proposed by using sensitivity analysis of ASPEN $Plus^{(R)}$ to apply the coal containing under the 200 ppm ash for integrated gasification combined cycle. Particularly, the coal gasification process was classified as three parts : pyrolysis process, volatile matter combustion process and char gasification process. The dimension and operating condition of 1.5 ton/day class non-slagging gasifier are reflected in the coal gasification process model.

Entrained-Flow Coal Water Slurry Gasification (분류층 습식 석탄가스화 기술)

  • Ra, HoWon;Lee, SeeHoon;Yoon, SangJun;Choi, YoungChan;Kim, JaeHo;Lee, JaeGoo
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.129-139
    • /
    • 2010
  • Coal gasification process, which had developed originally to convert coal from hydrogen and carbon monoxide, has used and developed in many countries because of environmental advantages such as carbon dioxide storage, decrease of pollutants and so on. Generally entrained-flow gasification process using pulverized coal under $75{\mu}m$ is used in Integrated Gas Combined Cycle(IGCC) because of easy scale up and high efficiency of energy conversion. Especially entrained-flow gasifers with coal water slurry have been used in many applications due to its fully developed technologies. In this paper, several technologies for coal-water slurry gasification that involves slurry preparation, burner, gasifier, slag melting and numerical simulation for plant design and operation were investigated. Entrained-flow gasification with coal water slurry can be used for synfuel production, SNG, chemicals as well as IGCC. To develop hybrid gasification process and use different types of coal, it is necessary to develop new technologies that will increase efficiency of the process.

Impact of Internal/External Diffusion on Gasification Reaction Rate Analysis of Coal Char in High Temperatures and Elevated pressures (고온/고압 조건에서의 석탄 촤 내부 및 외부 가스화 반응효과)

  • Kim, Gyeong-Min;Kim, Jin-Ho;Lisandy, Kevin Yohanes;Kim, Ryang-Gyoon;Kim, Gyu-Bo;Jeon, Chung-Hwan
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.4
    • /
    • pp.23-29
    • /
    • 2016
  • Reactivity of gasification defined by bouardard reaction is critical parameter in efficiency of the gasifier. In this study, char reactivity of the gasification was derived from the experiments using the intrinsic reaction kinetics model. Pressurized wire mesh heating reactor (PWMR) can produce high temperature and high pressure conditions up to 50 atm and 1750 K, respectively and PWMR was designed to evaluate the intrinsic reaction kinetics of $CO_2$ gasification. In this study, Kideco and KCH (sub-bituminous Indonesian coal) were pulverized and converted into char. Experiments used the PWMR were conducted and the conditions of the temperature and pressure were 1373~1673 K, 1~40 atm. To distinguish the pressure effect from high pressurized condition, internal and external effectiveness factors were considered. Finally, the intrinsic kinetics of the Kideco and KCH coal char were derived from $n^{th}$ order reaction rate equations.

Electrostatic Precipitability of the Coal Fly-Ash by the Pilot Scale Test

  • Ahn, Kook-Chan;Kim, Bong-Hwan;Jang, Yang-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.602-612
    • /
    • 2001
  • The equation of the particle collection efficiency proposed by Deutsch has been modified through the various experiments to correct the errors caused by the assumptions made for the equation. In order to get an modified Deutsch equation that can be applied to real conditions, a pilot scale electrostatic precipitator is used. The effects of operational variables on the particle collection efficiency are evaluated. Particle resistivity, gas temperature, moisture contents in gas, gas velocity and particle concentration are used as the operational variables. Two different types of coal fly-ash obtained from the fluidized bed combustor and the pulverized coal combustor are used as test particulate to evaluate the effect of the physiochemical and electrical characteristics of the particle on the particle collection efficiency. The experimental results are fitted with the modified Deutsch equation made by Matts-Ohnfeldt and the extended Deutsch equation made by E. C. Potter to evaluate the effect of the particle characteristics and the operation conditions on the particle collection efficiency of the electrostatic precipitator.

  • PDF

Effect of Particle size and Blending Ratio on Thermo Reaction and Combustion Characteristics in Co-firing with Bituminous and Sub-bituminous Coals (역청탄과 아역청탄 혼합연소조건에서 입자크기와 혼소율이 열물성반응과 연소특성에 미치는 영향)

  • Sung, Yon-Mo;An, Jae-Woo;Moon, Cheor-Eon;Ahn, Seong-Yool;Kim, Sung-Chul;Seo, Sang-Il;Kim, Tae-Hyung;Choi, Gyung-Min;Kim, Duck-Jool
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.65-73
    • /
    • 2010
  • In order to provide fundamental information for developing reaction model in the practical blended coal power plants, effects of particle size and blending ratio on combustion characteristics and thermal reaction in co-firing with bituminous and sub-bituminous coals were experimentally investigated using a TGA and a laboratory-scale burner. Characteristic parameters including ignition, burnout temperature and activation energy were determined from TG and DTG combustion profiles. Distributions of flame length and mean particle temperature were investigated from the visualization of flames in slit-burner system. As coal particle size decreased and volatile matter content increased, characteristic temperatures and activation energy decreased. The ignition/burnout characteristics and activation energy are linearly influenced by a variation in particle size and blending ratio. These results indicated that the control of the coal blending ratio can improve the combustion efficiency for sub-bituminous coals and the ignition characteristics for bituminous coals.

Comparision of Combustion Characteristics of the Different Property Coal in Cyclone Combustor (사이클론 연소기에서 성상이 다른 석탄의 연소 특성 비교)

  • Hong, Sung-Sun;Hwang, Kap-Sung;Choi, Byung-Sun
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.337-344
    • /
    • 1994
  • Two coals which have a quite different properties were selected to compare the combustion characteristics in a cyclone combustor. The capacity of the combustion test rig is about 75kW and total volume is 5.7 liters. The pulverized sample coals are well burned from fuel rich(air ratio 0.4) to fuel lean(airs ratio 1.6). Two different property coals show quite different patterns of ash collection in slag pot, dust separator and combustion chamber. Combustion temperature of subbituminous coal is about $100^{\circ}C$ lower than bituminous coal at the entire region, and in case of bituminous coal, hot spot appeared at the lower part and axial line of the combustion chamber.

  • PDF

Characteristics of Spontaneous Combustion of Various Fuels for Coal-Fired Power Plant by Carbonization Rank

  • Kim, Jae-kwan;Park, Seok-un;Shin, Dong-ik
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.2
    • /
    • pp.83-92
    • /
    • 2019
  • Spontaneous combustion propensity of various coals of carbonization grade as a pulverized fuel of coal-fired power plant has been tested from an initial temperature of $25^{\circ}C$ to $600^{\circ}C$ by heating in an oven with air to analyze the self-oxidation starting temperature. These tests produce CPT (Cross Point Temperature), IT (Ignition temperature), and CPS (Cross Point Slope) calculated as the slope of time taken for a rapid exothermic oxidation reaction at CPT base. CPS shows a carbonization rank dependence whereby wood pellet has the highest propensity to spontaneous combustion of $20.995^{\circ}C/min$. A sub-bituminous KIDECO coal shows a CPS value of $15.370^{\circ}C/min$, whereas pet coke has the highest carbonization rank at $2.950^{\circ}C/min$. The nature of this trend is most likely attributable to a concentration of volatile matter and oxygen functional groups of coal surface that governs the available component for oxidation, as well as surface area of fuel char, and constant pressure molar heat.

Study on the Co-firing of Sewage Sludge to a 80 kWth-scale Pulverized Coal Combustion System (80 kWth급 미분탄 연소 시스템에서 하수슬러지 혼소시 연소 특성 연구)

  • Chae, Taeyoung;Lee, Jaewook;Lee, Youngjae;Yang, Won
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.74-80
    • /
    • 2019
  • Thermochemical treatment of sewage sludge is an energy-intensive process due to its high moisture content. To save the energy consumed during the process, the hydrothermal carbonization process for sewage sludge can be used to convert sewage sludge into clean solid fuel without pre-drying. This study is aimed to investigate co-firing characteristics of the hydrothermally carbonated sewage sludge (HCS) to a pulverized coal combustion system. The purpose of the measurement is to measure the pollutants produced during co-firing and combustion efficiency. The combustion system used in this study is a furnace with a down-firing swirl burner of a $80kW_{th}$ thermal input. Two sub-bituminous coals were used as a main fuel, and co-firing ratio of the sewage sludge was varied from 0% to 10% in a thermal basis. Experimental results show that $NO_x$ is 400 ~ 600 ppm, $SO_x$ is 600 ~ 700 ppm, and CO is less than 100 ppm. Experimental results show that stable combustion was achieved for high co-firing ratio of the HCS. Emission of $NO_x$ and $SO_x$ was decreased for higher co-firing ratio in spite of the higher nitrogen contents in the HCS. In addition, it was found that the pollutant emission is affected significantly by composition of the main fuel, regardless of the co-firing ratios.

Numerical Analysis of Turbulent Reacting Flow in the Pulverized Coal Combustor (미분탄 연소로내 난류 반응유동장의 수치해석적 연구)

  • 나혜령;이진욱;윤용승
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1998.05a
    • /
    • pp.57-62
    • /
    • 1998
  • 미분탄 연소로는 산업현장, 특히 화력발전플랜트에서 널리 사용되는 설비로서 국내외의 많은 현장에서 적용되고 있다. 이에 따라 연소로내의 난류유동장과 연소현상 등에 대한 이해 및 이를 설계에 응용하고자 하는 노력들이 진행되고 있다. 특히 연소로내의 복사열전달 특성의 이해를 통한 연소로 크기 결정 및 수순환 해석, 화로출구온도 계산에 의한 대류전열부 설계 등에 적용하고자 시도하고 있다. (중략)

  • PDF

Effect of Co-combustion of Biomass on Emissions in Pulverized Coal Furnaces (석탄/바이오매스 혼합연소의 대기오염 영향)

  • 이시훈;현주수;임영준;박영옥;김성철
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.187-188
    • /
    • 2003
  • 세계는 전체 에너지 수요의 약 80%를 화석연료에 의존하고 있으며 화석연료중 약 50%는 석탄에 의존하고 있다. 국내의 경우에도 전체 전력 생산의 약 30% 정도는 계속 석탄으로 유지될 전망이다. 환경문제가 21세기의 중요한 테마로 부상하면서 화석연료 사용에 의한 유해 대기오염물질의 배출이 문제가 되고 있으며 그 규제는 점차 강화되어 최근에는 SO$_2$와 NOx에 강화된 규제가 적용되고 있고 $CO_2$의 규제도 구체화되고 있다. (중략)

  • PDF