• Title/Summary/Keyword: Pultrusion FRP

Search Result 42, Processing Time 0.021 seconds

Effect of Freezing and Thawing on Adhesion of Cement Concrete with Coarse-sand Coated FRP (규사코팅 FRP와 콘크리트 부착특성에 동결융해가 미치는 영향)

  • Lee, Gyu Phil;Park, Kwang Phil;Hwang, Jae Hong;Kim, Dong Gyou
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.117-123
    • /
    • 2013
  • As fiber reinforced polymer (FRP) material is appled for a curved structure such as tunnel, FRP material must has a curved shape. Until now, the curved FRP material has been producted by hand-lay-up or filament winding work. It is impossible for mass production of the curved FRP material by these methods. Also, the quality of product by these methods is lower than that by pultrusion method. New pultrusion method and equipment had been developed for production of FRP material with steady curvature. The objective of this study is to evaluate the effect of freezing and thawing on adhesion of cement concrete with coarse-sand coated FRP in repair and reinforcement of cement-concrete structure using curved FRP material.

Minimum Thickness of FRP Member Applicable to FRP-Concrete Composite Deck (FRP-콘크리트 합성 바닥판에 적용 가능한 FRP 부재의 최소 두께)

  • Cho, Keun-Hee;Park, Sung-Yong;Kim, Sung-Tae;Cho, Jeong-Rae;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.317-320
    • /
    • 2006
  • In order to determine a minimum thickness of the pultruded GFRP panel as a structural member, some experimental studies were performed. GFRP tubes with 2mm, 4mm, 6mm thickness were manufactured by pultrusion process. First, coupon tests for finding mechanical properties were carried out. Comparisons between test results and analysis results based on classical laminate theory showed large differences in case of 2mm, 4mm specimens. The reason is that it is difficult to apply appropriate pultruding force and keep layered stitched fabric flat for the pultrusion process of complex shaped FRP member with small thickness. On the consequence, we decide 6mm as a minimum thickness of FRP member. Second, 4-point bending tests were performed and the results with compared with numerical analysis. The behavior of FRP tube can be exactly predicted by numerical analysis if buckling analysis is included.

  • PDF

Simulation and Evaluation of Compressive Strength of FRP According to the Winding Orientation of Glass Fiber (FRP에서 와인딩 각도에 따른 압축강도의 시뮬레이션과 특성평가)

  • Park, Hoy-Yul;Kang, Dong-Pil;Han, Dong-Hee;Kim, In-Sung;Pyo, Hyun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.250-253
    • /
    • 2000
  • The fiber orientation in FRP has a great effect on the strength of FRP because the strength of FRP mainly depends on the strength of fiber. Unidirectional FRP made by pultrusion method has comparatively lower compressive strength than tensile strength. Compressive strength of unidirectional FRP may be increased by filament winding layer which has tensile stress when compressive stress was loaded. In this study, compressive strength and stresses of FRP rods were simulated according to the winding orientation of glass fiber. Inner part of FRP was made unidirectionally by pultrusion method and outer part of FRP was made by filament winding method. Simulated value and real evaluated compressive strength were compared to investigate stresses which is prominent to the fracture of FRP. The shear stresses had a great effect on the strength of FRP although the stress of parallel direction of FRP was much higher.

  • PDF

Mechanical Properties of Insulator FRP Rod According to the Winding Orientation of Glass Fiber (유리섬유의 배향에 따른 전기절연용 FRP의 강도특성)

  • Park, Hyo-Yeol;Gang, Dong-Pil;Han, Dong-Hui;Pyo, Hyeon-Dong;Kim, Tae-Ok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.6
    • /
    • pp.321-327
    • /
    • 2000
  • FRP has been used very much as high strength and electrical insulation materials. The fiber contributes the high strength and modulus to the composite. The main roles of the matrix in composite materials like FRP are to transmit and distribute stresses among the individual fibers. The fiber orientation in FRP has a great effect on the strength of FRP because the strength of FRP mainly depends on the strength of fiber. In this study, compressive and bending stresses of FRP rods were simulated and measured according to the winding orientation of glass fiber. Inner part of FRP was made unidirectionally by pultrusion method and outer part of FRP was made by filament winding method to give fiber orientation to the FRP. The shear stresses had great effect on the strength of FRP although the stress of parallel direction of FRP was much higher. The tendency of compressive and bending strengths with glass fiber orientation was different each other.

  • PDF

Bond Performance of FRP Reinforcing Bar for Concrete Structures after Chemical Environmental Exposure (화학적 환경에 노출된 콘크리트 보강용 FRP 보강근의 부착 성능)

  • Park, Chan-Gi;Won, Jong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.3
    • /
    • pp.73-81
    • /
    • 2004
  • FRP reinforcing bars(rebars) are produced through a variety of manufacturing process includes pultrusion, and filament winding and braiding etc. Each manufacturing method produces a different surface condition of FRP rebar. The surface properties of FRP rebar is an important property for mechanical bond with concrete. Current methods of providing surface deformation to FRP rebars include helical wrapping, surfaces and coating and rib molding. The problem with the helical wrapping method is that it can not provide enough surface deformation for good bond and it can be easily sheard off from the FRP rebars. Sand coating and rib molding provide surface deformation only to the outer FRP skins. Therefore, FRP rebar has about 60% of bond strength of steel rebar. The main objective was to evaluate the bond properties of FRP rebar after environmental exposure. Five types of FRP rebar includes CFRP ISO, GFRP Aslan, AFRP Technora CFRP(Korea), and GFRP(Korea) rebars performed direct bond tests. Also, FRP rebar bond specimens were subjected to exposure conditions including alkaline solution, acid solution, salt solution and deionized water etc. According to bond test results, CFRP(Korea) and CFRP(Korea) rebars were found to have better bond strength with concrete than previous FRP rebars. Also, FRP(Korea) rebar had more than about 70% in bond strength of steel rebar.

Development of the Hybrid CFFT Pile (FRP-콘크리트 합성말뚝의 개발)

  • Choi, Jin-Woo;Joo, Hyung-Joong;Nam, Jeong-Hun;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.20-28
    • /
    • 2010
  • In this paper, new type CFFT (Concrete Filled FRP Tube) was suggested in order to improve the flexural stiffness. Since the existing CFFT was produced by filament winding process, re-bar for concrete may be necessary in order to ensure structural safety under flexure re-bar. In comparison with existing type CFFT, new type CFFT was reinforced by circular shaped pultrusion FRP without re-bar. Filament winding FRP was attached to the outer layer of pultrusion FRP. Structural behavior of new type CFFT filled with concrete (HCFFT) was investigated by the mechanical property test for the component element and the FE analysis. Furthermore, compressive strength of the HCFFT member based on the equation suggested in previous studies.

  • PDF

Study on Pultrusion of FRP by Dielectric Heating (유전가열에 의한 FRP의 인발성형 연구)

  • Park, Hoy-Yul;Kang, Dong-Pil;Ahn, Myeong-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.445-448
    • /
    • 2004
  • Radio frequency and microwave dielectric heating are well-known electroheating methods, used in industrial applications where non electrically conducting materials are to be heated, dried or otherwise processed. The major reason for considering this technique for any process is based on its unique ability to transfer heat into the volume of an electrically non conducting material such as insulator directly, rather than, via a surface. Conventional heating must first bring heat to the product surface and there after it depends on the physical characteristics and condition of the material as to how effectively this heat is transmitted into the mass. The product would suffer surface damage before the main body is adequately processed. Dielectric heating is applied to enhance conventional heating methods and to drastically shorten the required processing duration. Although the use of dielectric heating has been a well proven technique for several years in some industries, its application in the preheating of FRP has been limited by the insufficient experience. In this paper a method is described for uniform radio frequency heating of preheating of FRP.

  • PDF

Analytical Prediction of Elastic Properties of Laminated Pultrusion FRP Composite Material (인발성형 적층 FRP 복합소재 재료상수의 해석적 추론)

  • Kang, Jin-Ock;Zureick, Abdul-Hamid
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.17-24
    • /
    • 2002
  • 인발성형 적층 FRP 복합소재의 재료상수는 일반적으로 시편실험을 통해 구해지고 있으나, 본 논문에서는, 실험에서 구한 탄성계수가 부재일 경우를 위해, Micromechanics와 Classical Laminate Theory (CLT)를 이용한 적층 FRP 복합재료의 탄성계수(E/sub L/과 E/sup b//sub L/) 예측모델을 제시하였다 또한 예측모델로부터 구한 값과 실험으로부터 얻은 실측값을 비교하여 그 적정성을 검증하였고, 예측모델의 민감도 및 확률적인 특성을 구성소재 (Constituents)의 재료특성에 근거해 평가하였다.

  • PDF

Laboratory Performance Evaluation of Alternative Dowel Bar for Jointed Concrete Pavements (콘크리트 포장용 고내구성 대체 다웰바의 실내공용성 평가)

  • Park, Seong Tae;Park, Jun Young;Lee, Jae Hoon;Kim, Hyung Bae
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.23-36
    • /
    • 2013
  • PURPOSES: The problem under this circumstance is that the erosion not only drops strength of the steel dowel bar but also comes with volume expansion of the steel dowel bar which can reduce load transferring efficiency of the steel dowel bar. To avoid this erosion problem, alternative dowers bars are developed. METHODS: In this study, the bearing stresses between the FRP tube dowel bar and concrete slab are calculated and compared with its allowable bearing stress to check its structural stability in the concrete pavement. These comparisons are conducted with several cross-sections of FRP tube dowel bars. Comprehensive laboratory tests including the shear load-deflection test on a full-scale specimen and the full-scale accelerated joint concrete pavement test are conducted and the results were compared with those from the steel dowel bar. RESULTS: In all cross-sections of FRP tube dowel bars, computed bearing stresses between the FRP tube dowel bar and concrete slab are less than their allowable stress levels. The pultrusion FRP-tube dowel bar show better performance on direct shear tests on full-scale specimen and static compression tests at full-scale concrete pavement joints than prepreg and filament-winding FRP-tube dowel bar. CONCLUSIONS: The FRP tube dowel bars as alternative dowel bar are invulnerable to erosion that may be caused by moisture from masonry joint or bottom of the pavement system. Also, the pultrusion FRP-tube dowel bar performed very well on the laboratory evaluation.