• Title/Summary/Keyword: Pulsed laser ablation in liquid

Search Result 14, Processing Time 0.023 seconds

ZnO Nanowires Fabricated by Pulsed Laser Deposition using Gold Catalyst (PLD-Furnace로 증착시킨 금촉매를 이용한 ZnO 나노와이어 합성)

  • Son, Hyo-Jeong;Jeon, Kyung-Ah;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.5-6
    • /
    • 2005
  • ZnO nanowlres (NWs) were fabricated using Au as catalyst for a method combining laser ablation cluster formation and vapor-liquid-solid (VLS) growth. The target used in synthesis was pure ZnO ceramics. Two different substrates were used; (0001)-oriented sapphires and Au-coated sapphires. The Au thin film was deposited by thermal evaporation and the thickness was about 50 ${\AA}$. ZnO NWs were only formed in case of that used catalyst metal. Field effect scanning electron microscopic (FESEM) investigation showed that the average diameter of ZnO NWs was about 70 nm and the typical lengths varied from $3{\sim}4{\mu}m$.

  • PDF

Effects of sodium dodecyl sulfate surfactant on up-conversion luminescence of Er3+/Yb3+-codoped NaLa(MoO4)2 nanocolloidal phosphor prepared by pulsed laser ablation in water

  • Kang, SukHyun;Jung, Kyung-Hwan;Kim, Kang Min;Kim, Won Rae;Han, HyukSu;Mhin, Sungwook;Son, Yong;Shim, Kwang Bo;Lee, Jung-Il;Ryu, Jeong Ho
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.2
    • /
    • pp.158-163
    • /
    • 2019
  • Er3+/Yb3+-codoped NaLa(MoO4)2 colloidal nanocrystals were synthesized by pulsed laser ablations in de-ionized water and sodium dodecyl sulfate (NaC12H25SO4, SDS) aqueous solution for up-conversion (UC) luminescence bio-labeling applications. The influences of the SDS molecules on the crystallinities, crystal morphologies, crystallite sizes, and UC luminescence properties of the prepared Er3+/Yb3+-codoped NaLa(MoO4)2 colloidal nanocrystals were investigated in detail. Under a 980-nm excitation, the Er3+/Yb3+-codoped nanocolloidal NaLa(MoO4)2 suspension exhibited a weak red emission near 670 nm and strong green UC emissions at 530 and 550 nm, corresponding to the intra 4f transitions of Er3+ (4F9/2, 2H11/2, 4S3/2) → Er3+ (4I15/2). When the SDS solution was used, a smaller average crystallite size, narrower size distribution, and enhanced UC luminescence were observed. These characteristics were attributed to the amphoteric SDS molecules attached to the positively charged Er3+/Yb3+-codoped NaLa(MoO4)2 colloidal nanocrystals, effectively occupying the oxygen defect on their surfaces. The Er3+/Yb3+-codoped nanocrystalline NaLa(MoO4)2 suspension prepared in the SDS solution exhibited a remarkably strong green emission visible to the naked eyes.

Probing of Microscale Phase-Change Phenomena Based on Michelson Interforometry (Michelson 간섭계를 응용한 미세 상변화 현상 계측)

  • Kim, Dong-Sik;Park, Hee-K.;Grigoropoulos, Costas P.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.348-353
    • /
    • 2001
  • Experimental schemes that enable characterization of phase-change phenomena in the micro scale regime is essential for understanding the phase-change kinetics. Particularly, monitoring rapid vaporization on a submicron length scale is an important yet challenging task in a variety of laser-processing applications, including steam laser cleaning and liquid-assisted material ablation. This paper introduces a novel technique based on Michelson interferometry for probing the liquid-vaporization process on a solid surface heated by a KrF excimer laser pulse (${\lambda}=248nm,\;FWHM=24\;ns$) in water. The effective thickness of a microbubble layer has been measured with nanosecond time resolution. The maximum bubble size and growth rate are estimated to be of the order of $0.1{\mu}m\;and\;1\;m/s$, respectively. The results show that the acoustic enhancement in the laser induced vaporization process is caused by bubble expansion in the initial growth stage, not by bubble collapse. This work demonstrates that the interference method is effective for detecting bubble nucleation and microscale vaporization kinetics.

  • PDF

Probing of Microscale Phase-Change Phenomena Based on Michelson Interforometry (Michelson 간섭계를 응용한 미세 상변화 현상 계측)

  • Kim, Dong-Sik;Park, Hui-Gwon;Grigoropoulos, Costas-P.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1140-1147
    • /
    • 2001
  • Experimental schemes that enable characterization of phase-change phenomena in the microscale regime are essential for understanding the phase-change kinetics. Particularly, monitoring rapid vaporization on a submicron length scale is an important yet challenging task in a variety of laser-processing application, including steam laser cleaning and liquid-assisted material ablation. This paper introduces a novel technique based on Michelson interferometry for probing the liquid-vaporization process on a solid surface heated by a KrF excimer laser pulse(λ=248nm, FWHM=24ns) in water. The effective thickness of a microbubble layer has been measured with nanosecond time resolution. The maximum bubble size and growth rate are estimated to be of the order of 0.1㎛ and 1m/s, respectively. The results show that the acoustic enhancement in the laser induced vaporization process is caused by bubble expansion in the initial growth stage, not by bubble collapse. This work demonstrates that the interference method is effective for detecting bubble nucleation and microscale vaporization kinetics.