• Title/Summary/Keyword: Pulsed laser ablation

Search Result 129, Processing Time 0.025 seconds

High energy laser heating and ignition study

  • Lee, K.C.;Kim, K.H.;Yoh, J.J.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.525-530
    • /
    • 2008
  • We present a model for simulating high energy laser heating and ignition of confined energetic materials. The model considers effect of ablation of steel plate with long laser pulses and continuous lasers of several kilowatts and the thermal response of well-characterized high explosives for ignition. Since there is enough time for the thermal wave to propagate into the target and to create a region of hot spot in the high explosives, electron thermal diffusion of ultra-short(femto- and pico-second) lasing is ignored; instead, heat diffusion of absorbed laser energy in the solid target is modeled with thermal decomposition kinetic models of high explosives are used. Numerically simulated pulsed-laser heating of solid target and thermal explosion of cyclotrimethylenetrinitramine(RDX), triaminotrinitrobenzene(TATB), and octahydrotetranitrotetrazine(HMX) are compared to experimental results. The experimental and numerical results are in good agreement.

  • PDF

Histological Changes of the Wound in the Tongue Mucosa of White Rats by Pulsed Nd:YAG Laser - A Comparative Experiment with the Scalpel Incision (Pulsed Nd:YAG 레이저로 유발된 백서 설점막 창상의 조직학적 변화-수술칼에 의해 형성된 창상과의 비교 실험)

  • 박준상;박미희;박봉수
    • Journal of Oral Medicine and Pain
    • /
    • v.22 no.1
    • /
    • pp.125-135
    • /
    • 1997
  • The Author examined the clinical and histological changes on the dorsal tongue mucosa of the adult rats after lasing by pulsed Nd:YAG laser and incising with scalpel. The dorsal tongue was lased through 320$\mu\textrm{m}$optic fiber moving 2.5mm/second to make linear incision 5mm. The five conditions of lasing were three application with 1.0W, 1.75W, 3.0W and 3.0W under saline cooling, and single application with 3.0W at 20Hz. With scalpel, linear incisions through the surface epithelium were performed to 5mm in length. After observing the clinical changes of the incised wounds, the animals were sacrified and the tissues were excised to make the tissue specimens. The stained microscopic tissue slide were observed histologically under the microscope. The following results were obtained : 1. While incision with scalpel causes severe bleeding, lasing does not cause bleeding. 2. In three applications with 1.75W and 20Hz, tissue ablation was limited to areas contacted with optic fiber. 3. In three applications with 3.0W and 20Hz, deep incised wound, extensive destruction of the adjacent epithelium and charring were observed. 4. In three applications with 3.0W and 20Hz under saline cooling, tissue ablation was limite to the superficial mucosa and charring was not observed. 5. In single application with 3.0W and 20Hz, the shape of the incised wound was similar to that of the scalpel incision.

  • PDF

Comparison of Degradation Behaviors for Titanium-based Hard Coatings by Pulsed Laser Thermal Shock

  • Jeon, Seol;Lee, Heesoo
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.523-527
    • /
    • 2013
  • Ti-based coatings following laser ablation were studied to compare degradation behaviors by thermomechanical stress. TiN, TiCN, and TiAlN coatings were degraded by a Nd:YAG pulsed laser with an increase in the laser pulses. A decrease in the hardness was identified as the pulses increased, and the hardness levels were in the order of TiAlN > TiCN > TiN. The TiN showed cracks on the surface, and cracks with pores formed along the cracks were observed in the TiCN. The dominant degradation behavior of the TiAlN was surface pore formation. EDS results revealed that diffusion of substrate atoms to the coating surface occurred in the TiN. Delamination occurred in the TiN and TiCN, while the TiAlN which has higher thermal stability than the TiN and TiCN maintained adhesion to the substrate. It was considered that the decrease in the hardness of the Ti-based hard coatings is attributed to surface cracking and the diffusion of substrate atoms.

Synthesis and characterization of GaN nanoparticles by pulsed laser deposition (펄스레이저증착법에 의한 GaN 나노입자의 합성 및 특성분석)

  • ;;;Koshizaki Naoto
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.2
    • /
    • pp.79-82
    • /
    • 2003
  • GaN nanoparticles were synthesized by the pulsed laser deposition (PLD) process on $SiO_2$substrate after irradiating the surface of the GaN sintered pellet by the ArF (193 nm) excimer laser. At this moment Ar gas pressure of 100 Pa, 50 Pa, 10 Pa and 1 Pa were applied during the ablation process and laser power of 100 mJ and 200 mJ were also applied. The synthesized fan nanoparticles were characterized by XRD, SEM, TEM, XPS and optical absorption spectra. The synthesized GaN nanoparticles had the crystallite sizes of 20~30 nm, and besides, GaN nanoparticles synthesized under low Ar gas pressure compared to the others corresponded with stoichiometry, and the optical band edge of the GaN nanoparticles was blueshifted.

WATER INDUCED MECHANICAL EFFECT ON THE DENTAL HARD TISSUE BY THE SHORT PULSED LASER

  • Kwon,Yong-Hoon;Kim, You-Young
    • Journal of Photoscience
    • /
    • v.5 no.1
    • /
    • pp.33-37
    • /
    • 1998
  • One macroscopic effect in the free-running Er:YAG laser is an accumulation of microscopic effects. Understanding of the exogenous water induced mechanical effect on the dental hard tissue by the Qswitched Er:YAG laser has an important impact on the further understanding of the free-running Er:YAG laser ablation on the dental hard tissue. The Q-switched Er:YAG laser (1-$\mu$s-long pulse width) was used in the recoil pressure measurement with an aid of water-jet system and a pressure transducer. The amplitude of the recoil pressure depends on the tooth surface conditions (dry and wet) and the volume of the water upon it. Wet surfaces yielded higher recoil pressure than that of dry, surface, and as the volume of the exogenous water drop increased, the amplitude of the recoil pressure increased also.

  • PDF

A Study on the Structural and Electrical Properties of PLZT Thin Films Prepared by Laser Ablation (레이저 에블레이션법으로 제작된 PLZT 박막의 구조 및 전기적 특성에 관한 연구)

  • Jang, Nak-Won;Mah, Suk-Bum;Paik, Dong-Soo;Choi, Hyung-Wook;Park, Chang-Yub
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.866-870
    • /
    • 1998
  • PLZT thin films were fabricated with different Zr/Ti ratios by pulsed laser deposition. PLZT films deposited on Pt/Ti/SiO$_2$/Si substrate. This PLZT thin films of 5000$\AA$ thickness were crystallized at $600^{\circ}C$, $O_2$ pressure 200m Torr. 2/55/45 PLZT thin film showed a maximum dielectric constant value of $\varepsilon$\ulcorner=1550 and dielectric loss was 0.03 at 10kHz. At 2/70/30 PLZT thin film, coercive field and remnant polarization was respectively 19[kV/cm], 8[$\mu$C/$\textrm{cm}^2$]. Raman spectroscopy results showed that the bands of spectra became broader as the amount of Zr mol% increased and two crystal phase coexisted at 2/55/45 PLZT film. Raman spectroscopy was useful for crystal structure analysis of PLZT thin films.

  • PDF

Magnetic hardening of nano-thick $Sm_2$$Fe_{17}$$N_x$ films grown by a pulsed laser deposition

  • Yang, Choong-Jin;Kim, Sang-Won;Jianmin Wu
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.251-265
    • /
    • 2000
  • S $m_{2}$F $e_{17}$ $N_{x}$ film magnets using a S $m_{2}$F $e_{17}$ target were prepared at $N_{2}$ gas atmosphere using a Nd-YAG laser ablation technique. The effect of nitrogen pressure, deposition temperature, pulsation time and film thickness on the structure and magnetic properties of S $m_{2}$F $e_{17}$ $N_{x}$ film were studied. Increasing the nitrogen pressure up to 5 atm. was confirmed to lead the formation of complete S $m_{2}$F $e_{17}$ $N_{x}$ compound. Optimized magnetic properties with the nitrogenation temperature ranging over 500-53$0^{\circ}C$ could be obtained by extending the nitrogenation time up to 4 hours. Relatively low coercivities of 400~600 Oe were exhibited from the S $m_{2}$F $e_{17}$ $N_{x}$ films having the thickness of 50~100 nm while 4$\pi$ $M_{s}$ of 10~12 kG could be achieved. In-plane anisotropic characteristic, which was the basic goal in this study, was achieved by controlling the nitrogenation parameters.ameters.ers.ameters.

  • PDF

Properties of MTiO3 (M = Sr, Ba) and PbM'O3(M'= Ti, Zr) Superlattice Thin Films Fabricated by Laser Ablation

  • Lim, T.M.;Park, J.Y.;Han, J.S.;Hwang, P.G.;Lee, K.H.;Jung, K.W.;Jung, D.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.201-204
    • /
    • 2009
  • $BaTiO_3/SrTiO_3$ and $PbTiO_3/PbZrO_3$ superlattice thin films were fabricated on $Pt/Ti/SiO_2/Si$ substrate by the pulsed laser deposition process. The morphologies and physical properties of deposited films were characterized by using X-ray diffractometer, HR-SEM, and Impedance Analyzer. XRD data and SEM images of the films indicate that each layer was well deposited alternatively in the superlattice structure. The dielectric constant of $BaTiO_3/SrTiO_3$ superlattice thin film was higher than that of individual $BaTiO_3$ or $SrTiO_3$ film. Same result was obtained in the $PbTiO_3/PbZrO_3$system. The dielectric constant of a superlattice film was getting higher as the number of layer is increased.

Thrust Characteristics of a Laser-Assisted Pulsed Plasma Thruster

  • Masatoshi Kawakami;Hideyuki Horisawa;Kim, Itsuro ura
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.294-299
    • /
    • 2004
  • An assessment of a novel laser-electric hybrid propulsion system was conducted, in which a laser-induced plasma was induced through laser beam irradiation onto a solid target and accelerated by electrical means instead of direct acceleration only by using a laser beam. A fundamental study of newly developed rectangular laser-assisted pulsed-plasma thruster (PPT) was conducted. On discharge characteristics and thrust performances with increased peak current compared to our previous study to increase effects of electromagnetic forces on plasma acceleration. Maximum peak current increased for our early study by increasing electromagnetic effects in a laser assisted PPT. At 8.65 J discharge energy, the maximum current reached about 8000 A. Plasma behaviors emitted from a thruster in various cases were observed with an ICCD camera. It was shown that the plasma behaviors were almost identical between low and high voltage cases in initial several hundred nanoseconds, however, plasma emission with longer duration was observed in higher voltage cases. Canted current sheet structures were also observed in the higher voltage cases using a larger capacitor. With a newly developed torsion-balance type thrust stand, thrust performances of laser assisted PPT could be estimated. The impulse bit and specific impulse linearly increased. On the other hand, coupling coefficient and the thrust efficiency did not increase linearly. The coupling coefficient decreased with energy showing maximum value (20.8 ?Nsec/J) at 0 J, or in a pure laser ablation cases. Thrust efficiency first decreased with energy from 0 to 1.4 J and then increased linearly with energy from 1.4 J to 8.6 J. At 8.65 J operation, impulse bit of 38.1 ?Nsec, specific impulse of 3791 sec, thrust efficiency of 8 %, and coupling coefficient of 4.3 ?Nsec/J were obtained.

  • PDF

Preparation of LaGaO3 Based Oxide Thin Film on Porous Ni-Fe Metal Substrate and its SOFC Application

  • Ju, Young-Wan;Matsumoto, Hiroshige;Ishihara, Tatsumi;Inagaki, Toru;Eto, Hiroyuki
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.796-801
    • /
    • 2008
  • $LaGaO_3$ thin film was prepared on Ni-Fe metal porous substrate by Pulsed Laser Deposition method. By the thermal reduction, the dense $NiO-{Fe_3}{O_4}$ substrate is changed to a porous Ni-Fe metal substrate. The volumetric shrinkage and porosity of the substrate are controlled by the reduction temperature. It was found that a thermal expansion property of the Ni-Fe porous metal substrate is almost the same with that of $LaGaO_3$ based oxide. $LaGaO_3$ based electrolyte films are prepared by the pulsed laser deposition (PLD) method. The film composition is sensitively affected by the deposition temperature. The obtained film is amorphous state after deposition. After post annealing at 1073K in air, the single phase of $LaGaO_3$ perovskite was obtained. Since the thermal expansion coefficient of the film is almost the same with that of LSGM film, the obtained metal support LSGM film cell shows the high tolerance against a thermal shock and after 6 min startup from room temperature, the cell shows the almost theoretical open circuit potential.