• Title/Summary/Keyword: Pulsed laser

Search Result 1,243, Processing Time 0.032 seconds

LASER-INDUCED SOOT VAPORIZATION CHARACTERISTICS IN THE LAMINAE DIFFUSION FLAMES

  • Park, J.K.;Lee, S.Y.;Santor, R.
    • International Journal of Automotive Technology
    • /
    • v.3 no.3
    • /
    • pp.95-99
    • /
    • 2002
  • The characteristics of soot vaporization induced by a high-energy Pulsed laser were studied in an ethylene-air laminar flame. A system consisting of two pulsed lasers was used for the experiments. The pulse from the first laser was used to vaporize the soot particles, and the delayed pulse from the second laser was used to measure the residual soot volume fraction. Laser-induced soot vaporization was characterized according to the initial particle size distribution. The results indicated that soot particles could not be completely vaporized simply by introducing a high intensity laser pulse. Residual soot volume fractions present after vaporization appeared to be insensitive to the initial soot particle size distribution. Since the soot vaporization effect is more pronounced in the region of high soot concentrations, this laser-induced soot vaporization technique may be a very useful tool for measuring major species in highly sooting flame.

Weldability of aluminum alloys by multi-wavelength laser beam (다파장 레이저빔을 이용한 알루미늄 합금의 응접특성)

  • Kim, Jong-Do;Kim, Jeong-Mook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.567-574
    • /
    • 2007
  • Aluminum and aluminum alloys have high rate of lightness, recycling property and excellent specific strength. Fields using them have been widening because they ould satisfy both energy reduction and high efficiency in manufactures production. But they have many problems on welding due to high thermal conductivity and reflectivity, so the study to solve these problems ate proceeding actively around the world. This study was purposed to improve weldability and spread application range for aluminium alloys by using the unique property of aluminium which absorb high energy around $800{\mu}m$ wavelength and the higher temperature, the mote absorbtion of laser beam on preheating by multi-wavelength laser beam(pulsed Nd:YAG laser + diode laser with $808{\mu}m$ wavelength). The favorable mechanical properties were acquired by the test results of strength, hardness and leak of weld metal which had reduced its defect like crack and so on.

CW 및 Pulsed 레이져를 이용한 세라믹 절단

  • 방세윤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.156-160
    • /
    • 1994
  • Use of engineering ceramics has been increasing due to the outstanding physical and chemical properties. Conventional machining processes, however, are not applicable due to their hardness and brittleness. Laser cutting is a promising alternative for these ceramics. In this study, experimental data of CO $_{2}$ laser cutting of $Al_{2}$ $O_{3}$ and Si $_{3}$ N $_{4}$ are obtained to give a guide in the industry. Results of $Al_{2}$ $O_{3}$ cutting showed extreme weakness to thermal crack and it was found that pulsed beam has to be used for thick $Al_{2}$ $O_{3}$ specimen. Si $_{3}$ N $_{4}$ showed good results for both CW and pulsed beams. Using pulsed beam resulted narrower kerf width with increased surface roughness a nd reduced cutting speed. It was also found that a parameter call path energy is useful for representing minimum threshold value for possible cutting range with pulsed beam.

  • PDF

Various Pulse Forming of Pulsed $CO_2$ laser using Multi-pulse Superposition Technique

  • Chung, Hyun-Ju;Kim, Hee-Je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.4
    • /
    • pp.127-132
    • /
    • 2001
  • We describe the pulse forming of pulsed $CO_2$laser using multi-pulse superposition technique. A various pulse length, high duty cycle pulse forming network(PFN) is constructed by time sequence. That is, this study shows a technology that makes it possible to make various pulse shapes by turning on SCRs of three PFN modules consecutively at a desirable delay time with the aid of PIC one-chip microprocessor. The power supply for this experiment consists of three PFN modules. Each PFN module uses a capacitor, a pulse forming inductor, a SCR, a High voltage pulse transformer, and a bridge rectifier on each transformer secondary. The PFN modules operate at low voltage and drive the primary of HV pulse transformer. The secondary of the transformer has a full-wave rectifier, which passes the pulse energy to the load in a continuous sequence. We investigated laser pulse shape and duration as various trigger time intervals of SCRs among three PFN modules. As a result, we can obtain laser beam with various pulse shapes and durations from about 250 $mutextrm{s}$ to 600 $mutextrm{s}$.

  • PDF

Simulation of Active Compensated Pulsed Alternator with a Laser Flashlamp Load Based on Simplified Model

  • Yuan, Pei;Yu, Kexun;Ye, Caiyong;Ren, Zhang'ao
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.434-439
    • /
    • 2012
  • This paper presents a nontraditional laser power system in which an active compensated pulsed alternator (ACPA) drives a flashlamp directly without the use of capacitor groups. As a result, the volume of the laser system is decreased because of the high energy density of the ACPA. However, the difficulty in matching the output of the alternator with the laser flashlamp is a significant issue and needs to be well analyzed. In order to solve this problem, based on the theory for ACPA, the authors propose a simplified model for the system of ACPA with flashlamp load by the way of circuit simulation. The simulation results preliminarily illuminate how the performance of the ACPA laser power system is affected. Meanwhile, the simulation results can also supply a consultation for future ACPA laser power system design and control.

A STUDY ON WELD POOL MONITORING IN PULSED LASER EDGE WELDING

  • Lee, Seung-Key;Na, Suck-Joo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.595-599
    • /
    • 2002
  • Edge welding of thin sheets is very difficult because of the fit-up problem and small weld area In laser welding, joint fit-up and penetration are critical for sound weld quality, which can be monitored by appropriate methods. Among the various monitoring systems, visual monitoring method is attractive because various kinds of weld pool information can be extracted directly. In this study, a vision sensor was adopted for the weld pool monitoring in pulsed Nd:YAG laser edge welding to monitor whether the penetration is enough and the joint fit-up is within the requirement. Pulsed Nd:YAG laser provides a series of periodic laser pulses, while the shape and brightness of the weld pool change temporally even in one pulse duration. The shutter-triggered and non-interlaced CCD camera was used to acquire a temporally changed weld pool image at the moment representing the weld status well. The information for quality monitoring can be extracted from the monitored weld pool image by an image processing algorithm. Weld pool image contains not only the information about the joint fit-up, but the penetration. The information about the joint fit-up can be extracted from the weld pool shape, and that about a penetration from the brightness. Weld pool parameters that represent the characteristics of the weld pool were selected based on the geometrical appearance and brightness profile. In order to achieve accurate prediction of the weld penetration, which is nonlinear model, neural network with the selected weld pool parameters was applied.

  • PDF

Effect of Pulse Shapes on Weld Defects in Pulsed Laser Welding of Stainless Steel

  • Kim, Jong-Do;Kil, Byung-Lea;Kim, Young-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1270-1278
    • /
    • 2004
  • This paper describes the effectiveness of laser pulse shaping in eliminating weld defects such as porosity, cracks and undercuts in pulsed Nd:YAG laser welding. A large porosity was formed in a keyhole mode of deeply penetrated weld metal of any stainless steel. Solidification cracks were present in STS 310S with above 0.017%P and undercuts were formed in STS 303 with about 0.3%S. The conditions for the formation of porosity were determined in further detail in STS 316. With the objectives of obtaining a fundamental knowledge of formation and prevention of weld defects, the fusion and solidification behavior of a molten puddle was observed during laser spot welding of STS 310S through a high speed video photographing technique. It was deduced that cellular dendrite tips grew rapidly from the bottom to the surface, and consequently residual liquid remained at the grain boundaries in wide regions and enhanced the solidification cracking susceptibility. Several laser pulse shapes were investigated and optimum pulse shapes were proposed for the reduction and prevention of porosity and solidification cracking.

Formation of Cobalt Nanoparticles by Thin Film Dewetting using Furnace and Pulse-Laser Annealing Processes (로 열처리 및 펄스레이저에 의한 박막의 비젖음 현상을 이용한 코발트 나노 입자 형성)

  • Hwang, Suk-Hun;Kim, Jung-Hwan;Oh, Yong-Jun
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.316-321
    • /
    • 2009
  • Co nanoparticles on silica substrates were fabricated by inducing a thin-film dewetting through two different processes-furnace annealing and pulsed-laser annealing. The effects of annealing temperature, film thickness and laser energy density on dewetting morphology and mechanism were investigated. Co thinfilms with thicknesses between 3 to 15 nm were deposited using ion-beam sputtering, and then, in order to induce dewetting, thermally annealed in furnace at temperatures between 600 and $900^{\circ}C$. Some as-deposited films were irradiated using a Nd-YAG pulsed-laser of 266 nm wavelength to induce dewetting in liquid-state. Films annealed in furnace agglomerated to form nanoparticles above $700^{\circ}C$, and those average particle size and spacing were increased with an increase of film thickness. On the laser annealing process, above the energy density of $100mJ/cm^2$, metal films were completely dewetted and the agglomerated particles exhibited greater size uniformity than those on the furnace annealing process. A detailed dewetting mechanism underlaying both processes were discussed.