• 제목/요약/키워드: Pulsed discharge

검색결과 198건 처리시간 0.026초

자궁 재활치료를 위한 울트라-스캔 방식의 펄스형 레이저시스템 (Pulsed Laser System of Ultra-scan Way for Uterus Rehabilitation Treatment)

  • 김휘영
    • 한국콘텐츠학회논문지
    • /
    • 제9권6호
    • /
    • pp.256-265
    • /
    • 2009
  • 레이저 출력은 20w에서 100w까지 연속적으로 조절이 되고 노출시간은 0.01초에서 수초 사이로 조절이 가능 하다. 펄스동작은 레이저 빔을 주기적으로 차단할 수가 있고 슈퍼펄스는 0.1$\sim$1ms사이에서 방전을 이루어지며, 순간적인 레이저 출력은 5$\sim$10 까지 증가된다. 특히, 자궁암의 경우 자궁구 내벽에서 악성세포를 제거해야 하므로 펄스에 대한 튜브출력의 안정이 매우 중요하다. 따라서, 본 연구에서는 영전압 스위칭동작을 확보하여 컨버터 1 차측 주 회로에 고주파 변압기 누설인덕턴스($L_1$) 증가 및 직렬 인덕터 없이 안정된 소프트 스위칭 동작영역이 확보, 인덕터($L_f$)전류의 순환전류 경로차단 컨버터 1차측 주회로 스위칭소자와 고주파 변압기의 도통손실이 크게 줄어, 고주파 2차측 정류부($D_5,\;D_6$)도 소프트 스위칭 되고, 스위칭손실 흡수분을 부하로 회생할 수 있는 특징을 갖고, 튜브안정화가 되어 설계 및 제작하여 실험한 결과, 기존장비에 비해 10%의 향상된 결과를 가져왔고, 추후 시스템적으로 보완을 하면 우수한 결과가 될 것으로 사려 된다.

Optical Diagnostics of Nanopowder Processed in Liquid Plasmas

  • Bratescu, M.A.;Saito, N.;Takai, O.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.17-18
    • /
    • 2011
  • Plasma in liquid phase has attracted great attention in the last few years by the wide domain of applications in material processing, decomposition of organic and inorganic chemical compounds and sterilization of water. The plasma in liquid is characterized by three main regions which interact each - other during the plasma operation: the liquid phase, which supply the plasma gas phase with various chemical compounds and ions, the plasma in the gas phase at atmospheric pressure and the interface between these two regions. The most complex region, but extremely interesting from the fundamental, chemical and physical processes which occur here, is the boundary between the liquid phase and the plasma gas phase. In our laboratory, plasma in liquid which behaves as a glow discharge type, is generated by using a bipolar pulsed power supply, with variable pulse width, in the range of 0.5~10 ${\mu}s$ and 10 to 30 kHz repetition rate. Plasma in water and other different solutions was characterized by electrical and optical measurements. Strong emissions of OH and H radicals dominate the optical spectra. Generally water with 500 ${\mu}S/cm$ conductivity has a breakdown voltage around 2 kV, depending on the pulse width and the repetition rate of the power supply. The characteristics of the plasma initiated in ultrapure water between pairs of different materials used for electrodes (W and Ta) were investigated by the time-resolved optical emission and the broad-band absorption spectroscopy. The deexcitation processes of the reactive species formed in the water plasma depend on the electrode material, but have been independent on the polarity of the applied voltage pulses. Recently, Coherent anti-Stokes Raman Spectroscopy method was employed to investigate the chemistry in the liquid phase and at the interface between the gas and the liquid phases of the solution plasma system. The use of the solution plasma allows rapid fabrication of the metal nanoparticles without being necessary the addition of different reducing agents, because plasma in the liquid phase provides a reaction field with a highly excited energy radicals. We successfully synthesized gold nanoparticles using a glow discharge in aqueous solution. Nanoparticles with an average size of less than 10 nm were obtained using chlorauric acid solutions as the metal source. Carbon/Pt hybrid nanostructures have been obtained by treating carbon balls, synthesized in a CVD chamber, with hexachloro- platinum acid in a solution plasma system. The solution plasma was successfully used to remove the template remained after the mesoporous silica synthesis. Surface functionalization of the carbon structures and the silica surface with different chemical groups and nanoparticles, was also performed by processing these materials in the liquid plasma.

  • PDF

피부과용 $CO_2$레이저시스템의 설계 및 구현 (Design and Implementation of Dermatology $CO_2$ Laser System)

  • Kim, Whi-Young
    • 한국컴퓨터정보학회논문지
    • /
    • 제6권2호
    • /
    • pp.8-13
    • /
    • 2001
  • 최근에 $CO_2$의료용 레이저의 이용이 증가함에 따라 레이저출력의 안정도, 유지와보수의 편리성, 소형화, 저가격화 등이 요구되고 있으며, 이러한 특성을 충족시키기 위해서본 연구에서는 실험실에서 직접 설계ㆍ제작할 수 있는 저속 축류형의 구조를 채택하였다. 그리고 펄스 발생 장치는 SMPS방식, 스위칭 소자는 수십KHz의 스위칭에 적합한 IGBT를 사용하였고 커패시터에 충전된 에너지를 고압ㆍ고주파 펄스 변압기를 사용하여 고압펄스로 변환 후 방전관에 인가하였다. 레이저 출력은 일정한 펄스폭에서 펄스반복율을 변화시킴으로서 제어가 가능하도록 하였다. 반복율은 10Hz~1KHz까지 가변할 수 있도록 설계하였고 최대펄스 전압은 약 20㎸였다. 실험결과 기존의 출력보다 최대 3% 향상을 얻을 수가 있었고. 최대출력은 동작압력 18 Torr에서 23w를 얻었다. 또한, 90˚에서 SCR를 점호하였고 펄스반복률은 60Hz조건에서 한개의 펄스파형을 포착하여 펄스폭(FWHM:Full Width at Half Maxium)을 측정한 결과 약 3㎳을 얻을 수가 있었다.

Washing을 통한 상분리 변화에 따른 그래핀 산화물의 분산도 조절 및 슈퍼커패시터의 특성에 관한 연구 (Electrical Properties of Supercapacitor Based on Dispersion Controlled Graphene Oxide According to the Change of Solution State by Washing Process)

  • 설지환;유인규;강석훈;김빛나;김인규
    • 한국전기전자재료학회논문지
    • /
    • 제31권2호
    • /
    • pp.102-106
    • /
    • 2018
  • Recently, there has been an increasing interest in the use of graphene as electrode materials for supercapacitors. In this regard, graphene oxide (GO) films were prepared using GO slurry obtained by dispersing GO powder in deionized (DI) water. The degree of dispersion of GO powder in DI water depends on the concentration of GO slurry, pH, impurity content, GO particle size, types of functional groups contained in GO, and manufacturing method of GO powder. In this study, the dispersivity of the GO powder was improved by adjusting the pH using only DI water (without additives), and a uniform GO film was obtained. The GO film was reduced by exposure to xenon intense pulsed light for a few milliseconds, and the reduced GO film was used as electrodes of a supercapacitor. The supercapacitor was characterized using cyclic voltammetry (CV), charge-discharge cycle, and electrochemical impedance spectroscopy measurements, and the specific capacitance of the supercapacitor was found to be ~140 F/g from the CV data.

DEVELOPMENT OF COMBIND WELDING WITH AN ELECTRIC ARC AND LOW POWER CO LASER

  • Lee, Se-Hwan;Massood A. Rahimi;Charles E. Albright;Walter R. Lempert
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.176-180
    • /
    • 2002
  • During the last two decades the laser beam has progressed from a sophisticated laboratory apparatus to an adaptable and viable industrial tool. Especially, in its welding mode, the laser offers high travel speed, low distortion, and narrow fusion and heat-affected zones (HAZ). The principal obstacle to selection of a laser processing method in production is its relatively high equipment cost and the natural unwillingness of production supervision to try something new until it is thoroughly proven. The major objective of this work is focused on the combined features of gas tungsten arc and a low-power cold laser beam. Although high-power laser beams have been combined with the plasma from a gas tungsten arc (GTA) torch for use in welding as early as 1980, recent work at the Ohio State University has employed a low power laser beam to initiate, direct, and concentrate a gas tungsten arcs. In this work, the laser beam from a 7 watts carbon monoxide laser was combined with electrical discharges from a short-pulsed capacitive discharge GTA welding power supply. When the low power CO laser beam passes through a special composition shielding gas, the CO molecules in the gas absorbs the radiation, and ionizes through a process known as non-equilibrium, vibration-vibration pumping. The resulting laser-induced plasma (LIP) was positioned between various configurations of electrodes. The high-voltage impulse applied to the electrodes forced rapid electrical breakdown between the electrodes. Electrical discharges between tungsten electrodes and aluminum sheet specimens followed the ionized path provided by LIP. The result was well focused melted spots.

  • PDF

한국 남해 마산만에서 수질환경의 계절적 변동과 기초생산 제한인자 (Variability of Water Quality and Limiting Factor for Primary Production in Semi-enclosed Masan Bay, South Sea of Korea)

  • 임동일;김영옥;강미란;장풍국;신경순;장만
    • Ocean and Polar Research
    • /
    • 제29권4호
    • /
    • pp.349-366
    • /
    • 2007
  • Seasonal variations of various physicochemical components (temperature, salinity, pH, DO, COD, DOC, nutrients-silicate, DIN, DIP) and potential limiting factor for phytoplankton primary production were studied in the surface water of semi-enclosed Masan Bay. Seasonal variations of nutrient concentrations, with lower values in summer and winter, and higher in fall, are probably controlled by freshwater loadings to the bay, benthic flux and magnitude of occurrence of phytoplankton communities. Their spatial distributional patterns are primarily dependent on physical mixing process between freshwater and coastal seawater, which result in a decreasing spatial gradient from inner to outer part of the bay. In the fall season of strong wave action, the major part of nutrient inputs (silicate, ammonium, dissolved inorganic phosphorus) comes from regeneration (benthic flux) at sediment-water interface. During the summer period, high Si:DIN and Si:DIP and low DIN:DIP relative to Redfield ratios suggest a N- and secondarily P-deficiency. During other seasons, however, silicate is the potential limiting factor for primary production, although the Si-deficiency is less pronounced in the outer region of the bay. Indeed, phytoplankton communities in Masan Bay are largely affected by the seasonal variability of limiting nutrients. On the other hand, the severe depletion of DIN (relatively higher silicate level) during summer with high freshwater discharge probably can be explained by N-uptake of temporary nanoflagellate blooms, which responds rapidly to pulsed nutrient loading events. In Masan Bay, this rapid nutrient consumption is considerably important as it can modify the phytoplankton community structures.

Fabrication of nickel nanoparticles-embedded carbon particles by solution plasma in waste vegetable oil

  • Pansuwan, Gun;Phuksawattanachai, Surayouth;Kerdthip, Kraiphum;Sungworawongpana, Nathas;Nounjeen, Sarun;Anantachaisilp, Suranan;Kang, Jun;Panomsuwan, Gasidit;Ueno, Tomonaga;Saito, Nagahiro;Pootawang, Panuphong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권10호
    • /
    • pp.894-898
    • /
    • 2016
  • Solution plasma is a unique method which provides a direct discharge in solutions. It is one of the promising techniques for various applications including the synthesis of metallic/non-metallic nanomaterials, decomposition of organic compounds, and the removal of microorganism. In the context of nanomaterial syntheses, solution plasma has been utilized to produce carbon nanoparticles and metallic-carbon nanoparticle systems. The main purpose of this study was to synthesize nickel nanoparticles embedded in a matrix of carbon particles by solution plasma in one-step using waste vegetable oil as the carbon source. The experimental setup was done by simply connecting a bipolar pulsed power generator to nickel electrodes, which were submerged in the waste vegetable oil. Black powders of the nickel nanoparticles-embedded carbon (NiNPs/Carbon) particles were successfully obtained after discharging for 90 min. The morphology of the synthesized NiNPs/Carbon was investigated by a scanning electron microscope, which revealed a good dispersion of NiNPs in the carbon-particle matrix. The X-ray diffraction of NiNPs/Carbon clearly showed the co-existence of crystalline Ni nanostructures and amorphous carbon. The crystallite size of NiNPs (through the Ni (111) diffraction plane), as calculated by the Scherrer equation was found to be 64 nm. In addition, the catalytic activity of NiNPs/Carbon was evaluated by cyclic voltammetry in an acid solution. It was found that NiNPs/Carbon did not show a significant catalytic activity in the acid solution. Although this work might not be helpful in enhancing the activity of the fuel cell catalysts, it is expected to find application in other processes such as the CO conversion (by oxidation) and cyclization of organic compounds.

2-클로로벤질 알코올 및 2,4-디클로로벤질 알코올 유도체를 이용한 TDI, MDI 및 HDI의 가스크로마토그래피 분석 (Gas Chromatographic Analysis of TDI, MDI and HDI Using 2-Chlorobenzyl Alcohol and 2,4-Dichlorobenzyl Alcohol Derivatives)

  • 윤주송;박준호;이강명;최홍순;조영봉;고상백;차봉석
    • 한국산업보건학회지
    • /
    • 제16권3호
    • /
    • pp.222-232
    • /
    • 2006
  • Objectives: The objective of this study was to propose the total isocyanate analytical method which involves derivation of 2,4-toluene diisocyanate(2,4-TDI), 2,6-toluene diisocyanate(2,6-TDI), 4,4'-methylenediphenyl diisocyanate(4,4'-MDI) and 1,6-hexamethylene diisocyanate(1,6-HDI) using 2-chlorobenzyl alcohol(2-CBA) or 2,4-dichlorobenzyl alcohol(2,4-DCBA), and analyzing of hydrolysate of the synthesized urethane with the gas chromatography(GC)/flame ionization detector(FID), GC/pulsed discharge ionization detector-electron capture detector(PD-ECD) and GC/mass selective detector(MSD). Methods: Urethanes were synthesized by reacting 2,4-TDI, 2,6-TDI, 4,4'-MDI and 1,6-HDI to 2-CBA or 2,4-DCBA. Urethanes was verified by TLC, HPLC/UVD and GC/MSD. For field application, the most suitable condition that 2-CBA coated in glass fiber filter removed completely and urethanes were not removed was searched. 2-CBA generated from hydrolysis of urethanes according to hydrolysis conditions. Diisocyanates were collected on field air and analyzed. Results: Urethanes which were white and solid phase synthesized by reacting 2,4-TDI, 2,6-TDI, 4,4'-MDI, 1,6-HDI and 2-CBA or 2,4-DCBA. And urethanes were verified by TLC, HPLC/UVD and GC/MSD. The most suitable conditions to remove 2-CBA coated in glass fiber filter were $87^{\circ}C$ and 20 mmHg and urethanes were not removed under same condition. Hydrolysis yields of urethanes were 99 % to 111 %. 2-CBA, the hydrolysate of urethanes was analyzed by GC/FID, GC/PD-ECD and GC/MSD. Conclusions: Simultaneous analysis of 2,4-TDI, 2,6-TDI, 4,4'-MDI and 1,6-HDI deriving with 2-CBA and 2,4-DCBA, along with a total isocyanate analysis, was feasible with GC/FID, GC/PD-ECD and GC/MSD. This result will be a guide of further study on total isocyanate analysis.