• Title/Summary/Keyword: Pulsed Laser

Search Result 1,241, Processing Time 0.03 seconds

Pulsed laser deposition 방법으로 증착된 $(Bi,Ce)_4Ti_3O_{12}$ 박막의 강유전특성 분석 (Characteristics of ferroelectric properties of $(Bi,Ce)_4Ti_3O_{12}$ thin films deposited by pulsed laser deposition)

  • 오영남;성낙진;윤순길
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 춘계학술발표강연 및 논문개요집
    • /
    • pp.37-37
    • /
    • 2003
  • Ferroelectric random acess memories (FeRAMs) 재료로 주목받고 있는 강유전 물질은 이미 여러 해 전부터 많은 물질들에 대해 연구가 진행되어 왔다. 그 중 낮은 공정 온도를 가지며 큰 remanent polarization 값을 갖는 lead zirconium titanate (PZT) 박막에 대해 많은 연구가 진행되고 있다. 하지만 Pt 기판위에 증착된 PZT 박막은 높은 피로 현상을 보이는 문제가 있다. 최근 Pulsed laser deposition이나 metal-organic vapor phase epitaxy (MOVPE) 등의 방법에 의해 epitaxial substituted-$Bi_4Ti_3O_{12}$ (La, Nd) 박막에 대해 보고가 되고 있다. 본 연구에서는 높은 remanent polarization 값을 갖는 $(Bi,Ce)_4Ti_3O_{12}$ (BCT) 박막을 pulsed laser deposition 방법을 사용하여 증착하였다. 또한 Bismuth의 양을 변화시켜 Bismuth의 양에 따른 remanent polarization의 변화를 확인하여 보았다. 사용된 기판은 Pt/$TiO_2$/$SiO_2$/Si 기판을 사용하였다.

  • PDF

Effects of Two-Step Annealing Process on the Pulsed Laser Ablated Lead Zirconate Titanate Thin Films

  • Rhie, Dong-Hee
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제3C권2호
    • /
    • pp.43-47
    • /
    • 2003
  • Lead zirconate titanate (PZT) thin films were fabricated by the pulsed laser ablation deposition (PLAD) method onto Pt/Ti/SiO$_2$/Si substrates. Crystalline phases as well as preferred orientations in PZT films were investigated by X-ray diffraction analysis (XRD). The well-crystallized perovskite phase and the (101) preferred orientation were obtained by two-step annealing at the conditions of $650^{\circ}C$, 1 hour. It was found that the temperature for the pulsed laser ablated PZT films annealed via a two-step annealing process can be reduced 20$0^{\circ}C$ compared to that of the conventional three-step annealing temperature profile for enhancing the transformation of the perovskite phase. The remanent polarization and the coercive field of this film were about 20 $\mu$C/$\textrm{cm}^2$ and 46 kV/cm, while the dielectric constant and loss values measured at 1 KHz were approximately 860 and 0.04, respectively. The interesting phenomena of this film, such as vertical shift in hysteresis curve, are also discussed.

Pulsed Laser Deposition 방법으로 증착된 ZnSnO3 압전 박막의 성장과 특성 평가 (Fabrication and Properties of ZnSnO3 Piezoelectric Films Deposited by a Pulsed Laser Deposition)

  • 박병주;윤순길
    • 한국전기전자재료학회논문지
    • /
    • 제27권1호
    • /
    • pp.18-21
    • /
    • 2014
  • Because the Pb-based piezoelectric materials showed problems such as an environmental pollution. lead-free $O_3$ materials were studied in the present study. The $O_3$ thin films were deposited at $640^{\circ}C$ on $Pt/Ti/SiO_2$ substrate by pulsed laser deposition (PLD) and were annealed for 5 min at $750^{\circ}C$ using rapid thermal annealing (RTA) in nitrogen atmosphere. Samples annealed at $750^{\circ}C$ showed a smooth morphology and an improvement of the dielectric and leakage properties, as compared with as-grown samples. However, electrical properties of the $O_3$ thin films obtained in the present study should be improved for piezoelectric applications.

C60 및 Si 초미립자 박막의 Laser 반응에 의한 가시광선발광 (Visible light emission from $C_60$ and Si nanoparticle film by laser process)

  • 김민성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.598-601
    • /
    • 2000
  • We investigated the fabrication of Si nanoparticle and $C_{60}$ thin films by pulsed laser ablation. As a result, we observed visible green photoluminescence spectra in the Si/C$_{60}$ multilayer films after laser annealing. It is considered that this green photoluminescence is occurred from SiC particles, which is produced reaction of Si nanoparticles with $C_{60}$ via laser annealing.ing.

  • PDF

펄스레이저에 의한 NAK80 금형강 표면연마의 해석적 연구 (Analytic Study on Pulsed-Laser Polishing on Surface of NAK80 Die Steel)

  • 김관우;김승환;조해용
    • 한국기계가공학회지
    • /
    • 제14권6호
    • /
    • pp.136-141
    • /
    • 2015
  • Laser surface polishing is a polishing method for improving surface roughness using an integrated laser beam. Using a laser for surface polishing can improve the surface condition without physical contact or chemical action. Laser polishing has mainly been used to polish the surface of diamond or optical articles, such as lenses and glasses. Recently, diverse studies on laser polishing for metals have been conducted. The analytic study of laser surface polishing has been conducted with experimental trials for comparison, so that the proper conditions for laser polishing can be recommended. In this study, laser surface polishing was simulated in order to predict the heat-affected zone on the die steel depending on the power of the pulsed laser. The simulated results were verified by comparing them to those of the experimental trials. Through this study, therefore, the application of FEM to the selection of appropriate laser conditions could be possible.

펄스 Nd:YAG 레이저에 의한 브라운관 부품의 용접시 빔의 출력특성과 광학변수 (Characteristics of Output Energy and Optical Parameters in Welding of Braun Tubes by Pulsed Nd:YAG Laser)

  • 김종도;하승협
    • 한국레이저가공학회지
    • /
    • 제8권1호
    • /
    • pp.27-37
    • /
    • 2005
  • During laser spot welding of the braun tube electron gun, phenomena such as serious spattering and oxidative reaction, etc. were occurred. The spatter occurred from weld pool affects the braun tube, namely it blocks up a very small hole on the shadow mask and causes short circuit between two poles of the electron gun. We guessed that high power density and oxidative reaction are main sources of these problems. So, we studied to prevent and to reduce spatter occurring in spot welding of the braun tube electron gun using pulsed Nd:YAG laser. The characteristics of laser output power was estimated, and the loss of laser energy by optical parameter and spatter was measured by powermeter. The effects of welding parameters, laser defocused distance and incident angle, were investigated on the shape and penetration depth of the laser welded bead in flare and flange joints. From these results, the laser peak power was a major factor to control penetration depth and to occur spatter. It was found that the losses of laser energy by optic parameter and sticked spatter affect seriously laser weldability of thin sheets.

  • PDF