• Title/Summary/Keyword: Pulsed I-V

Search Result 86, Processing Time 0.034 seconds

Output Ccharacteristics of XeCl Excimer Laser Excited by Transeverse-Electron-Beam (횡방향 전자빔여기 XeCl 엑시머 레이저의 출력특성)

  • 류한용;이주희;김용평
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.386-393
    • /
    • 1994
  • We have investigated output characteristics of XeCI excimer laser excited by transeverse electronbeam. We used e-beam output of 880 kV, 21 kA (70 ns, FWHM) and controlled current density of e-beam by pulsed magnetic coil (4.7 kG) which was fabricated around an e-beam diode (A-K gap is 21 mm) and laser chamber. We have obtained 35 J (4 atm) of e-beam deposition energy injected into laser media. The deposition energy was converted from an exposure area of Radcolor film and rising pressure of gas media which is measured by pressure jump method. The excited volume of $320cm^{3}$ was calculated. The maximum efficiency of 1.7% was obtained with the mixing ratio of HCllXe/Ar==0.2/ 6.3/93.5% and total pressure of 3 atm. Also laser output energy and specific energy were obtained 0.52 J and 1.7 J/I, respectively. For the analysis of experimental results we have developed computer simulation code. From the good agreements with the results of experiment and simulation we could theoretically explain the XeCI* formation channel. relaxation channel, and absorption channel of 308 nm.308 nm.

  • PDF

Design of High Average Power Pulse Transformer for 30-MW Klystron of L-Band Linac Application (산업용 선형가속기 시스템 적용을 위한 30-MW 클라이스트론용 고 평균전력 펄스 트랜스포머의 설계)

  • Jang, S.D.;Son, Y.G.;Gwon, S.J.;Oh, J.S.;Bae, Y.S.;Lee, H.G.;Moon, S.I.;Kim, S.H.;Cho, M.H.;NamKung, W.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1550-1551
    • /
    • 2006
  • An L-band linear accelerator system for e-beam sterilization is under design for bio-technology application. The klystron-modulator system as RF microwave source has an important role as major components to offer the system reliability for long time steady state operation. A PFN line type pulse generator with a peak power of 71.5-MW, $7{\mu}s$, 285 pps is required to drive a high-power klystron. The high power pulse transformer has a function of transferring pulse energy from a pulsed power source to a high power load. The pulse transformer producing a pulse with a peak voltage of 275 kV is required to produce 30-MW peak and 60 kW average RF output power at the frequency of 1.3-GHz. We have designed the high power pulse transformer with 1:13 step-up ratio. The peak and average power capability is 71.5-MW (275 kV, 260 A at load side with $7{\mu}s$ pulse width) and 130 kW, respectively. In this paper, we present a system overview and initial design results of the high power pulse transformer.

  • PDF

Parameter Evaluation of High-Power Pulse Transformer for L-Band 30-MW Klystron (L-band 30-MW 클라이스트론용 고출력 펄스트랜스포머의 파라미터 평가)

  • Jang, S.D.;Son, Y.G.;Kwon, S.J.;Oh, J.S.;Kim, S.H.;Yang, H.R.;Moon, S.I.;Kwon, B.H.;Cho, M.H.;NamKung, W.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1079-1081
    • /
    • 2007
  • An L-band Linear Accelerator System for E-beam sterilization is under construction for bio-technology application. The klystron-modulator system as an RF microwave source has an important role as major components to offer the system reliability for long time steady-state operations. A PFN line type pulse generator with a peak power of 71.5-MW, $7\;{\mu}s$, 285 pps is required to drive a high-power klystron. The high power pulse transformer has a function of transferring pulse energy from a pulsed power source to a high power load. The pulse transformer producing a pulse with a peak voltage of 275 kV is required to produce 30-MW peak and 60 kW average RF output power at the frequency of 1.3-GHz. We have designed the high power pulse transformer with 1:13 step-up ratio. The peak and average power capability is 71.5-MW (275 kV, 260 A at load side with $7\;{\mu}s$ pulse width) and 130 kW, respectively. In this paper, we present measurements and its analysis on the design parameters, and an initial test result as well as a design concept on the high-power pulse transformer.

  • PDF

Design and Fabrication of a High-Power Pulsed TWTA for Millimeter-Wave(Ka-Band) Multi-Mode Seeker (밀리미터파(Ka 밴드) 복합모드 탐색기용 고출력 펄스형 진행파관 증폭기(TWTA) 설계 및 제작)

  • Song, Sung-Chan;Kim, Sun-Ki;Lee, Sung-Wook;Min, Seong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.4
    • /
    • pp.307-313
    • /
    • 2019
  • The traveling wave tube amplifier (TWTA), which can be applied to the Ka-band millimeter-wave multi-mode seeker, consists of an high voltage power supply(HVPS), a grid modulator, a command and control, and an RF assembly. We designed a power supply that generates a -17.9 kV high voltage by synchronizing the pulse repetition frequency(PRF) and power supply switching frequency(i.e. synchronization frequency), and a high-speed grid-switching modulator for RF pulse modulation. The TWTA, which is fabricated through miniaturization with a volume of 3.18 L, has high pulse switching characteristics of up to 18.5 ns. The maximum rise/fall time of the grid on/bias signal and peak power is more than 564.9 W. Moreover, an excellent spurious performance of -68.4 dBc or less was confirmed within the range of PRF and PRF/2.

Electrical Stimulation Promotes Healing Accompanied by NOR in Keratinocytes and IGF-1 mRNA Expression in Skin Wound of Rat

  • Lee, Jae-Hyoung;Lee, Jong-Sook;Jeong, Myung-A.;JeKal, Seung-Joo;Kil, Eyn-Young;Park, Seung-Teack;Park, Chan-Eui
    • Biomedical Science Letters
    • /
    • v.13 no.1
    • /
    • pp.25-32
    • /
    • 2007
  • The purpose of this study was to investigate the effect of the high voltage pulsed Current (HVPC) stimulation on the healing rate and the proliferative activity of keratinocytes and IGF-I mRNA expression of an incisional wound in rat skin. Twenty male Sprague-Dawley rats ($265{\sim}290g$) were randomly divided into HVPC (n=10) and control group (n=10). Rats received 10 mm length of full-thickness incision wound on the back under the anesthesia. The HVPC group received electrical stimulation with a Current intensity of 50 V at 100 pps for a duration of 30 minutes, while the control group was given the same treatment without electricity for a week. Polarity was negative in first three days and positive thereafter. The wound length was measured and evaluated as percentage. The mean number of nucleolar organizer regions (NORs) per nucleus and level of IGF-I mRNA expression were calculated. The mean percent of wound closure were $51.17{\pm}17.76%$ and $80.71{\pm}11.91%$, respectively, in the sham treated control and HVPC stimulated groups (t=-4.308, P<0.001). The mean NOR number per nucleus of the keratinocytes in the control and HVPC group were $1.85{\pm}0.20$ and $2.70{\pm}0.23$, respectively (t=8.638, P<0.001). The IGF-I mRNA level were $0.76{\pm}0.44$ and $1.32{\pm}0.41$, respectively, in the control and HVPC stimulated wounds (t=2.906, P<0.01). There was a positive correlation between the mean NOR number per nucleus and IGF-l mRNA level with a Pearson product moment correlation coefficient of 0.72 (P<0.05). These findings suggest that the HVPC may activate the rRNA of the basal keratinocytes and upregulate the IGF-I mRNA levels by alteration of the electrical environment, and it may increase proliferative activity of the keratinocytes in the skin wound of the rat.

  • PDF

Study on Low-Temperature Solid Oxide Fuel Cells Using Y-Doped BaZrO3 (Y-doped BaZrO3을 이용한 저온형 박막 연료전지 연구)

  • Chang, Ik-Whang;Ji, Sang-Hoon;Paek, Jun-Yeol;Lee, Yoon-Ho;Park, Tae-Hyun;Cha, Suk-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.931-935
    • /
    • 2012
  • In this study, we fabricate and investigate low-temperature solid oxide fuel cells with a ceramic substrate/porous metal/ceramic/porous metal structure. To realize low-temperature operation in solid oxide fuel cells, the membrane should be fabricated to have a thickness of the order of a few hundreds nanometers to minimize IR loss. Yttrium-doped barium zirconate (BYZ), a proton conductor, was used as the electrolyte. We deposited a 350-nm-thick Pt (anode) layer on a porous substrate by sputter deposition. We also deposited a 1-${\mu}m$-thick BYZ layer on the Pt anode using pulsed laser deposition (PLD). Finally, we deposited a 200-nm-thick Pt (cathode) layer on the BYZ electrolyte by sputter deposition. The open circuit voltage (OCV) is 0.806 V, and the maximum power density is 11.9 mW/$cm^2$ at $350^{\circ}C$. Even though a fully dense electrolyte is deposited via PLD, a cross-sectional transmission electron microscopy (TEM) image reveals many voids and defects.

DC and RF Characteristics of AlGaN/InGaN HEMTs Grown by Plasma-Assisted MBE (AlGaN/InGaN HEMTs의 고성능 초고주파 전류 특성)

  • 이종욱
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.8
    • /
    • pp.752-758
    • /
    • 2004
  • This paper reports on the DC and RF characteristics of AlGaN/InGaN/GaN high electron-mobility transistors (HEMTs) grown by molecular beau epitaxy(MBE) on sapphire substrates. The devices with a 0.5 ${\mu}$m gate-length exhibited relatively flat transconductance(g$\_$m/), which results from the enhanced carrier confinement of the InGaN channel. The maximum drain current was 880 mA/mm with a peak g$\_$m/ of 156 mS/mm, an f$\_$T/ of 17.3 GHz, and an f$\_$MAX/ or 28.7 GHz. In addition to promising DC and RF results, pulsed I-V and current-switching measurements showed little dispersion in the unpassivated AlGaN/InGaN HEMTs. These results suggest that the addition of In to the GaN channel improves the electron transport characteristics as well as suppressing current collapse that is related to the surface trap states.

$ZnO_{1-x}S_x$ 버퍼층 건식 성장 시 스퍼터링 파워 변화에 따른 CIGS 태양전지 특성

  • Wi, Jae-Hyeong;Jo, Dae-Hyeong;Kim, Ju-Hui;Park, Su-Jeong;Jeong, Jung-Hui;Han, Won-Seok;Jeong, Yong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.684-685
    • /
    • 2013
  • p-형 반도체인 Cu(In,Ga)$Se_2$ (CIGS) 광 흡수 층은 이보다 에너지 밴드 간격이 큰 n-형 반도체와 이종 접합을 형성한다. 흡수층과 윈도우층 사이의 결정구조 차이와 밴드갭 에너지 차이를 완화시키기 위해 버퍼층이 필요하다. 버퍼층을 형성하는 물질로 화학적 용액 성장법(Chemical Bath deposition)을 사용한 CdS가 많이 적용되어 왔으나 Cd의 유해성 및 습식 공정으로 인한 연속공정에 대한 어려움이 있다. 따라서 버퍼층을 Cd을 포함하지 않는 ZnS, $In_2S_3$, (Zn, Mg)O 등과 같은 물질로 대체하여 원자층 증착법(Atomic Layer Deposition), 펄스레이져증착법(Pulsed Laser Deposition), 스퍼터링(sputtering) 등과 같은 건식으로 성장시키는 연구가 활발히 진행되고 있다. 본 연구에서는 $ZnO_{1-x}S_x$ ($0.2{\leq}x{\leq}0.4$)를 반응성 스퍼터링으로 증착하여 큰 밴드갭 에너지와 높은 광투과율를 갖는 버퍼층을 제작하였다. CIGS 박막의 손상을 줄여주기 위하여 RF 파워는 240, 200, 150, 100 W로 변화시켰다. CIGS 태양전지의 I-V 측정 결과, RF 파워가 150 W일 때 10.7%의 가장 높은 변환 효율을 보였고, 150 W 이상에서는 파워가 증가할 때 단락전류는 감소하였으며 개방전압은 다소 증가하였다. 반면 100 W에서 단락전류는 다소 증가하는 것에 반해 개방 전압이 급격히 낮아졌다. 이것은 파워에 따라 결합되는 산소의 양이 다르기 때문으로 생각된다.

  • PDF

A Study on $TiO_2$ Thin Film by PLD for Buffer Layer between Mesoproso $TiO_2$ and FTO of Dye-sensitized Solar Cell (염료 감응형 태양전지에서 Mesoproso $TiO_2$/FTO 사이에 완충층으로써의 PLD로 증착한 $TiO_2$ 박막에 관한 연구)

  • Song, Sang-Woo;Kim, Sung-Su;Roh, Ji-Hyoung;Lee, Kyung-Ju;Moon, Byung-Moo;Kim, Hyun-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.424-424
    • /
    • 2008
  • Dye-sensitized Solar Cell (DSC) is a new type of solar cell by using photocatalytic properties of $TiO_2$. The electric potential distribution in DSCs has played a major role in the operation of such cells. Models based on a built-in electric field which sets the upper limit for the open circuit voltage(Voc) and/or the possibility of a Schottky barrier at the interface between the mesoporous wide band gap semiconductor and the transparent conducting substrate have been presented. $TiO_2$ thin films were deposited on the FTO substrate by Nd:YAG Pulsed Laser Deposition(PLD) at room temperature and post-deposition annealing at $500^{\circ}C$ in flowing $O_2$ atmosphere for 1 hour. The structural properties of $TiO_2$ thin films have investigated by X-ray diffraction(XRD) and atomic force microscope(AFM). Thickness of $TiO_2$ thin films were controlled deference deposition time and measurement by scanning electron microscope(SEM). Then we manufactured a DSC unit cells and I-V and efficiency were tested using solar simulator.

  • PDF

Resistive Switching Behavior of Cr-Doped SrZrO3 Perovskite Thin Films by Oxygen Pressure Change (산소 분압의 변화에 따른 Cr-Doped SrZrO3 페로브스카이트 박막의 저항변화 특성)

  • Yang, Min-Kyu;Park, Jae-Wan;Lee, Jeon-Kook
    • Korean Journal of Materials Research
    • /
    • v.20 no.5
    • /
    • pp.257-261
    • /
    • 2010
  • A non-volatile resistive random access memory (RRAM) device with a Cr-doped $SrZrO_3/SrRuO_3$ bottom electrode heterostructure was fabricated on $SrTiO_3$ substrates using pulsed laser deposition. During the deposition process, the substrate temperature was $650^{\circ}C$ and the variable ambient oxygen pressure had a range of 50-250 mTorr. The sensitive dependences of the film structure on the processing oxygen pressure are important in controlling the bistable resistive switching of the Cr-doped $SrZrO_3$ film. Therefore, oxygen pressure plays a crucial role in determining electrical properties and film growth characteristics such as various microstructural defects and crystallization. Inside, the microstructure and crystallinity of the Cr-doped $SrZrO_3$ film by oxygen pressure were strong effects on the set, reset switching voltage of the Cr-doped $SrZrO_3$. The bistable switching is related to the defects and controls their number and structure. Therefore, the relation of defects generated and resistive switching behavior by oxygen pressure change will be discussed. We found that deposition conditions and ambient oxygen pressure highly affect the switching behavior. It is suggested that the interface between the top electrode and Cr-doped $SrZrO_3$ perovskite plays an important role in the resistive switching behavior. From I-V characteristics, a typical ON state resistance of $100-200\;{\Omega}$ and a typical OFF state resistance of $1-2\;k{\Omega}$, were observed. These transition metal-doped perovskite thin films can be used for memory device applications due to their high ON/OFF ratio, simple device structure, and non-volatility.