• Title/Summary/Keyword: Pulsed DC magnetron sputtering

검색결과 72건 처리시간 0.027초

Study on the Structural and Mechanical Characteristics of ITO Films Deposited by Pulsed DC Magnetron Sputtering

  • Kang, Junyoung;Le, Anh Huy Tuan;Park, Hyeongsik;Kim, Yongjun;Yi, Junsin;Kim, Sunbo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권6호
    • /
    • pp.351-354
    • /
    • 2016
  • The mechanical properties of ITO films such as adhesion and internal stress are very important for the commercial application of solar cell devices. We report high quality pulsed DC magnetron sputtered ITO films deposited on silicon and glass substrates with low resistivity and high transmittance for various working pressures ranging from 0.96 to 3.0 mTorr. ITO films showed the lowest resistivity of $2.68{\times}10^{-4}{\Omega}{\cdot}cm$, high hall mobility of $46.89cm^2/V.s$, and high transmittance (>85%) for the ITO films deposited at a low working pressure of 0.99 mTorr. The ITO films deposited at a low working (0.96 mTorr) pressure had both amorphous and polycrystalline structures and were found to have compressive stress while the ITO films deposited at higher temperature than 0.99 mTorr was mixture of amorphous and polycrystalline and was found to have tensile stress.

Ferromagnetic Resonance and X-Ray Reflectivity Studies of Pulsed DC Magnetron Sputtered NiFe/IrMn/CoFe Exchange Bias

  • Oksuzoglu, Ramis Mustafa;Akman, Ozlem;Yildirim, Mustafa;Aktas, Bekir
    • Journal of Magnetics
    • /
    • 제17권4호
    • /
    • pp.245-250
    • /
    • 2012
  • Ferromagnetic resonance and X-ray specular reflectivity measurements were performed on $Ni_{81}Fe_{19}/Ir_{20}Mn_{80}/Co_{90}Fe_{10}$ exchange bias trilayers, which were grown using the pulsed-DC magnetron sputtering technique on Si(100)/$SiO_2$(1000 nm) substrates, to investigate the evolution of the interface roughness and exchange bias and their dependence on the NiFe layer thickness. The interface roughness values of the samples decrease with increasing NiFe thickness. The in-plane ferromagnetic resonance measurements indicate that the exchange bias field and the peak-to-peak line widths of the resonance curves are inversely proportional to the NiFe thickness. Furthermore, both the exchange bias field and the interface roughness show almost the same dependence on the NiFe layer thickness. The out-of plane angular dependent measurements indicate that the exchange bias arises predominantly from a variation of exchange anisotropy due to changes in interfacial structure. The correlation between the exchange bias and the interface roughness is discussed.

Thermal Effect on Characteristics of IZTO Thin Films Deposited by Pulsed DC Magnetron Sputtering

  • Son, Dong-Jin;Ko, Yoon-Duk;Jung, Dong-Geun;Boo, Jin-Hyo;Choa, Sung-Hoon;Kim, Young-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권3호
    • /
    • pp.847-851
    • /
    • 2011
  • This study examined In-Zn-Sn-O (IZTO) films deposited on glass substrates by pulsed DC magnetron sputtering with various substrate temperatures. The structural, electrical, optical properties were analyzed. Xray diffraction showed that the IZTO films prepared at temperatures > $150^{\circ}C$ were crystalline which adversely affected the electrical properties. Amorphous IZTO films prepared at $100^{\circ}C$ showed the best properties, such as a low resistivity, high transmittance, figure of merit, and high work function of $4.07{\times}10^{-4}\;{\Omega}$, 85%, $10.57{\times}10^{-3}\;{\Omega}^{-1}$, and 5.37 eV, respectively. This suggests that amorphous IZTO films deposited at relatively low substrate temperatures ($100^{\circ}C$) are suitable for electrode applications, such as OLEDs as a substitute for conventional crystallized ITO films.

Pulsed DC 마그네트론 스퍼터링을 이용한 $SiN_x$ 합성 (Synthesis of silicon nitride thin film using pulsed DC magnetron sputtering on polymer substrates)

  • 전아람;금민종;신경식;이교웅;한전건
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2007년도 추계학술대회 논문집
    • /
    • pp.109-111
    • /
    • 2007
  • Pulsed DC 마그네트론 스퍼터링 장치를 이용하여 Polymer 및 Glass 기판 위에 $SiN_{\chi}$ (Silicon Nitride) 박막을 합성 시키고 이들의 구조적, 광학적 특성을 조사하였다. 막두께는 100 nm로 고정하였으며, power mode 및 질소 가스 유량비를 변수로 합성하였다.

  • PDF

A STUDY ON THE RELATIONSHIP BETWEEN PLASMA CHARACTERISTICS AND FILM PROPERTIES FOR MgO BY PULSED DC MAGNETRON SPUTTERING

  • Nam, Kyung H.;Chung, Yun M.;Han, Jeon G.
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2001년도 추계학술발표회 초록집
    • /
    • pp.35-35
    • /
    • 2001
  • agnesium Oxide (MgO) with a NaCI structure is well known to exhibit high secondary electron emission, excellent high temperature chemical stability, high thermal conductance and electrical insulating properties. For these reason MgO films have been widely used for a buffer layer of high $T_c$ superconducting and a protective layer for AC-plasma display panels to improve discharge characteristics and panel lifetime. Up to now MgO films have been synthesized by lE-beam evaporation, Molecular Beam Epitaxy (MBE) and Metalorganic Chemical Vapor Deposition (MOCVD), however there have been some limitations such as low film density and micro-cracks in films. Therefore magnetron sputtering process were emerged as predominant method to synthesis high density MgO films. In previous works, we designed and manufactured unbalanced magnetron source with high power density for the deposition of high quality MgO films. The magnetron discharges were sustained at the pressure of O.lmtorr with power density of $110W/\textrm{cm}^2$ and the maximum deposition rate was measured at $2.8\mu\textrm{m}/min$ for Cu films. In this study, the syntheses of MgO films were carried out by unbalanced magnetron sputtering with various $O_2$ partial pressure and specially target power densities, duty cycles and frequency using pulsed DC power supply. And also we investigated the plasma states with various $O_2$ partial pressure and pulsed DC conditions by Optical Emission Spectroscopy (OES). In order to confirm the relationships between plasma states and film properties such as microstructure and secondary electron emission coefficient were analyzed by X-Ray Diffraction(XRD), Transmission Electron Microscopy(TEM) and ${\gamma}-Focused$ Ion Beam (${\gamma}-FIB$).

  • PDF

The comparative study of pure and pulsed DC plasma sputtering for synthesis of nanocrystalline Carbon thin films

  • Piao, Jin Xiang;Kumar, Manish;Javid, Amjed;Wen, Long;Jin, Su Bong;Han, Jeon Geon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.320-320
    • /
    • 2016
  • Nanocrystalline Carbon thin films have numerous applications in different areas such as mechanical, biotechnology and optoelectronic devices due to attractive properties like high excellent hardness, low friction coefficient, good chemical inertness, low surface roughness, non-toxic and biocompatibility. In this work, we studied the comparison of pure DC power and pulsed DC power in plasma sputtering process of carbon thin films synthesis. Using a close field unbalanced magnetron sputtering system, films were deposited on glass and Si wafer substrates by varying the power density and pulsed DC frequency variations. The plasma characteristics has been studied using the I-V discharge characteristics and optical emission spectroscopy. The films properties were studied using Raman spectroscopy, Hall effect measurement, contact angle measurement. Through the Raman results, ID/IG ratio was found to be increased by increasing either of DC power density and pulsed DC frequency. Film deposition rate, measured by Alpha step measurement, increased with increasing DC power density and decreased with pulsed DC frequency. The electrical resistivity results show that the resistivity increased with increasing DC power density and pulsed DC frequency. The film surface energy was estimated using the calculated values of contact angle of DI water and di-iodo-methane. Our results exhibit a tailoring of surface energies from 52.69 to $55.42mJ/m^2$ by controlling the plasma parameters.

  • PDF

H13 공구강의 전처리에 따른 Mo-Cu-N 코팅의 기계적 특성 (Mechanical Properties of MoN-Cu Coatings according to Pre-treatment of AISI H13 Tool Steel)

  • 박현준;문경일;김상섭
    • 한국표면공학회지
    • /
    • 제53권6호
    • /
    • pp.343-350
    • /
    • 2020
  • The degradation of mechanical properties of nitride coatings to steel substrates is one of the main challenges for industrial applications. In this study, plasma nitriding treatment was used in order to increase the mechanical properties of Mo-Cu-N coating to the H13 tool steel. The nanostructured Mo-Cu-N coating was deposited using pulsed DC magnetron sputtering method with a single alloy Mo-Cu target. Mechanical properties of MoN-Cu coated samples after nitriding were found to be relatively better than non-nitrided MoN-Cu coating.

A Study on the properties of aluminum nitride films on the Al7075 deposited by pulsed DC reactive magnetron sputtering

  • Kim, Jung-hyo;Cha, Byung-Chul;Lee, Keun-Hak;Park, Won-Wook
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 추계총회 및 학술대회 논문집
    • /
    • pp.179-180
    • /
    • 2012
  • Aluminum alloys are widely known as non-ferrous metal with light weight and high strength. Consequently, these materials take center stage in the aircraft and automobile industry. The Al7075 aluminum alloy is based on the Al-Zn-Mg-Cu and one of the strongest wrought aluminum alloys. Aluminum nitride has ten times higher thermal conductivity($319W/m{\cdot}K$) than Al2O3 and also has outstanding electric insulation($1{\times}1014{\Omega}{\cdot}cm$). Furthermore, it has high mechanical property (430 MPa) even though its co-efficient of thermal expansion is less than alumina For these reasons, it has great possibilities to be used for not only the field which needs high strength lightweight but also electronic material field because of its suitability to be applied to the insulator film of PCB or wafer of ceramic with high heat conduction. This paper investigates the mechanical properties and corrosion behavior of aluminum alloy Al7075 deposited with aluminum nitride thin films To improve the surface properties of Al7075 with respect to hardness, and resistance to corrosion, aluminum nitride thin films have been deposited by pulsed DC reactive magnetron sputtering. The pulsed DC power provides arc-free deposition of insulating films.

  • PDF