• Title/Summary/Keyword: Pulse-on duration

Search Result 332, Processing Time 0.026 seconds

Hydrologic Regimes Analyses on Down Stream Effects of the Young Chun Dam by Indicators of Hydrologic Alterations (수문변화 지표법에 의한 영천댐이 하류하천에 미치는 유황변화 분석)

  • Park, Bong-Jin;Kim, Joon-Tae;Jang, Chang-Lae;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.2
    • /
    • pp.163-172
    • /
    • 2008
  • Hydrologic regimes play a major role in determining the biotic composition, structure, and function of river ecosystem. In this study, hydrologic regimes were analyzed on down stream effects of the Young-Chun dam construction using the Indicators of Hydrologic Alterations(IHA). The analysis results were as follows ; (1) Monthly mean flows were decreased during drought and flood season on the pre and post dam, (2) Magnitude and Duration of Annual Exterm Conditions, annual minima 1-day means was $3.48m^3/sec$, $0.89m^3/sec$ and annual maxima 1-day mean was $833.1m^3/sec$, $672.1m^3/sec$ on the pre and post dam (3) Timing of Annual Exterm conditions, Julian date of the annual minima 1-day means was 180th(June) in the pre dam, 257th(September) in the post dam, Julian date of the annual maxima 1-day means was 209th(July) in the pre dam, 217th(August) in the post dam, (4) Frequency and Duration of High and Low Pulse, Low Puls counts and duration were 3 times and 23 days in the pre dam, High Pulse counts and duration were 4 times and 2 days in the pre dam. (5) Rate and Frequency of Water Condition Changes, rise rates was 39.27 %, 19.36 % and fall rates -15.85 %, -8.16 % in the pre and post dam, respectively (6) Coefficient of Variation, annual exteram water conditions were decreased from 0.9054 to 0.6314 and from 1.0440 to 0.9617, Timing of Annual Exterm conditions were incereased for minima flow from 0.269 to 0.282, for maxima form 0.069 to 0.153.

Effect of curing treatments on the material properties of hardened self-compacting concrete

  • Salhi, M.;Ghrici, M.;Li, A.;Bilir, T.
    • Advances in concrete construction
    • /
    • v.5 no.4
    • /
    • pp.359-375
    • /
    • 2017
  • This paper presents a study of the properties and behavior of self-compacting concretes (SCC) in the hot climate. The effect of curing environment and the initial water curing period on the properties and behavior of SCC such as compressive strength, ultrasonic pulse velocity (UPV) and sorptivity of the SCC specimens were investigated. Three Water/Binder (W/B) ratios (0.32, 0.38 and 0.44) have been used to obtain three ranges of compressive strength. Five curing methods have been applied on the SCC by varying the duration and the conservation condition of SCC. The results obtained on the compressive strength show that the period of initial water curing of seven days followed by maturation in the hot climate is better in comparison with the four other curing methods. The coefficient of sorptivity is influenced by W/B ratio and the curing methods. It is also shown that the sorptivity coefficient of SCC specimens is very sensitive to the curing condition. The SCC specimens cured in water present a low coefficient of sorptivity regardless of the ratio W/B. Furthermore, the results show that there is a good correlation between ultrasonic pulse velocity and the compressive strength.

Evanescent-field Q-switched Yb:YAG Channel Waveguide Lasers with Single- and Double-pass Pumping

  • Bae, Ji Eun;Choi, Sun Young;Krankel, Christian;Hasse, Kore;Rotermund, Fabian
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.180-185
    • /
    • 2021
  • A femtosecond-laser inscribed Yb:YAG surface channel waveguide (WG) laser with single-walled carbon nanotubes deposited on the top surface of the WG was passively Q-switched by evanescent field interaction. Q-switched operation of the 14-mm-long compact Yb:YAG WG laser was achieved near 1031 nm with two different pumping schemes (single- and double-pass pumping) with an output coupling transmission of 91%. The Q-switched pulse characteristics depending on the absorbed pump power were investigated for both pumping geometries and analyzed in detail based on theoretical modeling. The best performances (energy/pulse duration) for each configuration were 204.4 nJ/75 ns at a repetition rate of 1.87 MHz, and 201.1 nJ/81 ns at 1.75 MHz for single- and double-pass pumping, respectively.

Study on the Applicability of Reflection Method using Ultrasonic Sweep Source for the Inspection of Tunnel Lining Structure - Physical Modeling Approach - (터널 지보구조 진단을 위한 초음파 스윕 발생원의 반사법 응용 가능성 연구 - 모형실험을 중심으로 -)

  • 김중열;김유성;신용석;현혜자
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.167-174
    • /
    • 2001
  • Reflection method using ultrasonic source has been attempted to obtain the information about tunnel lining structures composed of lining, shotcrete, water barrier and voids at the back of lining. In this work, two different types of sources, i.e. single-pulse source and sweep source, can be used. Single-pulse source with short time duration has the frequency content whose amplitudes tend to be concentrated around the dominant frequency, whereas sweep source with long time duration denotes a flat distribution of relatively larger amplitude over a broad frequency band, although the peak to peak amplitude of single-pulse source wavelet is equivalent to that of sweep source one. In traditional seismic application, a single-pulse source(weight drop, dynamite) is typically used. However, to investigate the fine structure, as it is the case in the tunnel lining structure, the sweep wavelet can be also a desirable source waveform primarily due to the higher energy over a broad frequency band. For the investigation purposes of sweep source, a physical modeling is a useful tool, especially to study problems of wave propagation in the fine layered media. The main purpose of this work was using a physical modeling technique to explore the applicability of sweep source to the delineation of inner layer boundaries. To this end, a two-dimensional physical model analogous to the lining structure was built and a special ultrasonic sweep source was devised. The measurements were carried out in the sweep frequency range 10 ∼ 60 KHz, as peformed in the regular reflection survey(e.g. roll-along technique). The measured data were further rearranged with a proper software (cross-correlation). The resulting seismograms(raw data) showed quitely similar features to those from a single-pulse source, in which high frequency content of reflection events could be considerably emphasized, as expected. The data were further processed by using a regular data processing system "FOCUS" and the results(stack section) were well associated with the known model structure. In this context, it is worthy to note that in view of measuring condition the sweep source would be applied to benefit the penetration of high frequency energy into the media and to enhance the resolution of reflection events.

  • PDF

Nd-YAG LASER MICRO WELDING OF STAINLESS WIRE

  • Takatugu, Masaya;Seki, Masanori;Kunimas, Takeshi;Uenishi, Keisuke;Kobayashi, Kojiro F.;Ikeda, Takeshi;Tuboi, Akihiko
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.187-192
    • /
    • 2002
  • Applicability of laser micro welding process to the fabrication of medical devices was investigated. Austenitic stainless steel wire (SUS304) was spot melted and crosswise welded, which is one of the most possible welding process for the fabrication of medical devices, by using a Nd-YAG laser. Effects of welding parameters on the microstructure, tensile strength and corrosion resistance were discussed. In the spot melting, melted metal width decreased with decreasing the input energy and pulse duration. Controlling the laser wave to reduce laser noise which occurred in the early stage of laser irradiation made reasonable welding condition wider in the welding condition of small pulse duration such as 2ms. The microstructure of the melted metal was a cellular dendrite structure and the cell size of the weld metal was about 0.5~3.5 ${\mu}{\textrm}{m}$. Tensile strength increased with the decrease of the melted metal width and reached to a maximum about 660MPa, which is comparable with that for the tempered base metal. Even by immersion test at 318K for 3600ks in quasi biological environment (0.9% NaCl), microstructure of the melted metal and tensile strength hardly changed from those for as melted material. In the crosswise welding, joints morphologies were classified into 3 types by the melting state of lower wire. Fracture load increased with input energy and melted area of lower wire, and reached to a maximum about 80N. However, when input energy was further increased and lower wire was fully melted, fracture load decreased due to the burn out of weld metal.

  • PDF

Systematic test on the effectiveness of MEMS nano-sensing technology in monitoring heart rate of Wushu exercise

  • Shuo Guan
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.155-163
    • /
    • 2023
  • Exercise is beneficial to the body in some ways. It is vital for people who have heart problems to perform exercise according to their condition. This paper describes how an Android platform can provide early warnings of fatigue during wushu exercise using Photoplethysmography (PPG) signals. Using the data from a micro-electro-mechanical system (MEMS) gyroscope to detect heart rate, this study contributes an algorithm to determine a user's fatigue during wushu exercise. It sends vibration messages to the user's smartphone device when the heart rate exceeds the limit or is too fast during exercise. The heart rate monitoring system in the app records heart rate data in real-time while exercising. A simple pulse sensor and Android app can be used to monitor heart rate. This plug-in sensor measures heart rate based on photoplethysmography (PPG) signals during exercise. Pulse sensors can be easily inserted into the fingertip of the user. An embedded microcontroller detects the heart rate by connecting a pulse sensor transmitted via Bluetooth to the smartphone. In order to measure the impact of physical activity on heart rate, Wushu System tests are conducted using various factors, such as age, exercise speed, and duration. During testing, the Android app was found to detect heart rate with an accuracy of 95.3% and to warn the user when their heart rate rises to an abnormal level.

Near-Infrared Laser Stimulation of the Auditory Nerve in Guinea Pigs

  • Guan, Tian;Wang, Jian;Yang, Muqun;Zhu, Kai;Wang, Yong;Nie, Guohui
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.269-275
    • /
    • 2016
  • This study has investigated the feasibility of 980-nm low-energy pulsed near-infrared laser stimulation to evoke auditory responses, as well as the effects of radiant exposure and pulse duration on auditory responses. In the experiments, a hole was drilled in the basal turn of the cochlea in guinea pigs. An optical fiber with a 980-nm pulsed infrared laser was inserted into the hole, orientating the spiral ganglion cells in the cochlea. To model deafness, the tympanic membrane was mechanically damaged. Acoustically evoked compound action potentials (ACAPs) were recorded before and after deafness, and optically evoked compound action potentials (OCAPs) were recorded after deafness. Similar spatial selectivity between optical and acoustical stimulation was found. In addition, OCAP amplitudes increased with radiant exposure, indicating a photothermal mechanism induced by optical stimulation. Furthermore, at a fixed radiant exposure, OCAP amplitudes decreased as pulse duration increased, suggesting that optical stimulation might be governed by the time duration over which the energy is delivered. Thus, the current experiments have demonstrated that a 980-nm pulsed near-infrared laser with low energy can evoke auditory neural responses similar to those evoked by acoustical stimulation. This approach could be used to develop optical cochlear implants.

The study of phase-change with electric field on chalcogenide thin films (칼코게나이드 박막의 전기적 펄스에 의한 상변화 특성 연구)

  • Yang, Sung-Jun;Shin, Kyung;Lee, Ki-Nam;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.120-122
    • /
    • 2003
  • We have been investigated phase-change with temperature and electric field in chalcogenide $Ge_2Sb_2Te_5$ thin film. $T_c$(crystallization temperature) is confirmed by measuring the resistance and conductivity with the varying temperature on the hotplate. We have measured I-V characteristics with $Ge_2Sb_2Te_5$ chalcogenide thin film. It is compared with I-V characteristics after impress the variable pulse. The pulse has variable height and duration that used voltage and current source.

  • PDF

The Study of Phase-change with Temperature and Electric field in Chalcogenide Thin Film

  • Yang, Sung-Jun;Shin, Kyung;Park, Jung-Il;Lee, Ki-Nam;Chung, Hong-Bay
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.5
    • /
    • pp.24-27
    • /
    • 2003
  • We have been investigated phase-change with temperature and electric field in chalcogenide Ge$_2$Sb$_2$Te$\sub$5/ thin film. T$\sub$c/(crystallization temperature) is confirmed by measuring the resistance with the varying temperature on the hotplate. We have measured I-V characteristics with Ge$_2$Sb$_2$Te$\sub$5/ chalcogenide thin film. It is compared with I-V characteristics after impress the variable pulse. The pulse has variable height and duration.

The Effects of Electroplating Parameters on the Morphologies and Compositions of Nickel-Iron Alloy Electrodeposits (Ni-Fe의 도금 층의 조성과 표면 형상에 영향을 미치는 도금인자들에 관한 연구)

  • Ko, Yeong-Kwon;Yim, Tai-Hong;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.3
    • /
    • pp.51-55
    • /
    • 2007
  • Nickel iron (Ni-Fe) alloy coating was investigated. The effects of the current density, current type, pulse duration and bath compositions on the morphologies and surface hardness of nickeliron deposits as well as the chemical compositions were investigated. The morphologies, surface hardness and chemical compositions of nickel-iron deposits were varied with current density, current type and bath compositions. The surface hardness was increased up to $550{\sim}600Hv$ when PC plating was employed. Crackless coating was obtained when saccharin was added. The change of composition with thickness was analyzed with EDS and FESEM.

  • PDF