• Title/Summary/Keyword: Pulse-Width Modulation

Search Result 984, Processing Time 0.021 seconds

Active Vibration Control of Smart Structure Using Pulse Width Modulation (펄스폭변조를 이용한 지능구조물의 능동진동제어)

  • Kwak, Moon K.;Kim, Ki-Young;Bang, Se-Yoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.105-111
    • /
    • 2005
  • This paper is concerned with the active vibration control of smart structure using actuator signal made of pulse width modulation. The pulse width modulation has been used in motor control, where the amount of energy fed into the motor is controlled by the pulse width instead of applied voltage. The advantage of using the pulse width modulation is that analog signal can be replaced by the digital signal so that we can reduce system costs and power consumption. The effect of pulse width modulation on the vibration response was investigated in this study and the valid transformation rule was found. Then, the pulse width modulation was realized using a microprocessor and electronic circuit. The active vibration suppression was carried out by combining the positive position feedback controller and the pulse width modulation. The experimental result shows that we can replace an expensive amplifier with a pulse width modulation system thus reducing the system cost. The result also shows that the active vibration control can be achieved by the pulse width modulation technique.

Effect of Pulse Width Modulation Methods on Power Losses and Thermal Loadings of Single-Phase 5-Level NPC Inverters for PV Systems (전압 변조 방법에 따른 단상 5-레벨 NPC 태양광 인버터의 전력 손실 및 열 부하 분석)

  • Ryu, Taerim;Choi, Ui-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.56-62
    • /
    • 2022
  • In this paper, the effect of pulse width modulation methods on thermal loadings and power losses of single-phase five-level NPC inverters for photovoltaic systems are analyzed. The pulse width modulation methods affect the power losses of the NPC inverters and thus lead to different thermal loadings of NPC inverters. To identify the reliability-critical power device with respect to thermal stress, the thermal loadings of I- and T-type NPC inverters are analyzed by applying the unipolar pulse modulation method. Then, the effect of the discontinuous pulse width modulation method on power losses and thermal loadings of power devices of I- and T-type NPC inverters are analyzed. Finally, the operation of NPC inverters applying the discontinuous pulse modulation method is confirmed by experiments. The results show that the discontinuous pulse modulation method is able to improve the reliability of NPC inverters by reducing thermal loadings of reliability-critical power devices and it is more effective for T-type NPC inverters than I-type NPC inverters.

High-Efficiency Full-Bridge DC-DC Converter with Current-Doubler Rectifier with Asymmetric Pulse-Width Modulation (비대칭 펄스 폭 변조 방식의 배전류 정류기 회로를 적용한 고효율 풀-브릿지 DC-DC 컨버터)

  • Yang, Min-Kwon;Choi, Woo-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.280-289
    • /
    • 2015
  • A high-efficiency full-bridge DC-DC converter with a current-doubler rectifier and an asymmetric pulse-width modulation is proposed. Through the asymmetric pulse-width modulation, the proposed converter achieves zero-voltage switching of power switches without the circulating currents. The proposed converter reduces the output current ripple through the current-doubler rectifier. A control strategy is suggested for the proposed converter to charge battery banks. A constant current and constant voltage charging is performed. The proposed converter achieved a higher efficiency compared with the conventional full-bridge DC-DC converter with a phase-shift modulation. The performance of the proposed converter is evaluated by the experimental results for a 1.0 kW prototype circuit.

A Simplified Carrier-Based Pulse-Width Modulation Strategy for Two-level Voltage Source Inverters in the Over-modulation Region

  • Jing, Feng;He, Feng-You
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1480-1489
    • /
    • 2017
  • In this study, a carrier-based pulse-width modulation (PWM) method for two-level voltage source inverters in the over-modulation region is proposed. Based on the superposition principle, the reference voltage vectors outside the linear modulation boundary are adjusted to relocate to the vector hexagon, while their fundamental magnitudes are retained. In accordance with the adjusted reference vector, the corresponding modulated waves are respectively deduced in over-modulation mode I and II to generate the gate signals of the power switches, guaranteeing the linearity of the fundamental output phase voltage in the over-modulation region. Moreover, due to the linear relationship between the voltage vector and the duty ratios, the complicated sector identification and holding angle calculation found in previous methods are avoided in the modulated wave synthesis, which provides great simplicity for the proposed carrier-based over-modulation strategy. Experimental results demonstrate the effectiveness and validity of the proposed method.

A Study on power control method of SMES using CSI with pulse-width modulation (펄스폭 변조방식 전류형 인버어터를 이용한 초전도 에너지 저장장치의 전력제어 연구)

  • Hahn, Song-Yop;Lee, Joong-Hui
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.32-35
    • /
    • 1988
  • Simultaneous control of active and reactive power for superconducting magnetic energy storage is possible by a current source inverter with paise - width modulation. And a current source inverter is useful to reduce low order harmonics. In this paper, paise generating method for pulse - width modulation is studied and harmonics with and without paise - width modulation is compared.

  • PDF

Optimized Space Vector Pulse-width Modulation Technique for a Five-level Cascaded H-Bridge Inverter

  • Matsa, Amarendra;Ahmed, Irfan;Chaudhari, Madhuri A.
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.937-945
    • /
    • 2014
  • This paper presents an optimized space vector pulse-width modulation (OSVPWM) technique for a five-level cascaded H-bridge (CHB) inverter. The space vector diagram of the five-level CHB inverter is optimized by resolving it into inner and outer two-level space vector hexagons. Unlike conventional space vector topology, the proposed technique significantly reduces the involved computational time and efforts without compromising the performance of the five-level CHB inverter. A further optimized (FOSVPWM) technique is also presented in this paper, which significantly reduces the complexity and computational efforts. The developed techniques are verified through MATLAB/SIMULINK. Results are compared with sinusoidal pulse-width modulation (SPWM) to prove the validity of the proposed technique. The proposed simulation system is realized by using an XC3S400 field-programmable gate array from Xilinx, Inc. The experiment results are then presented for verification.

Single Pulse-Width-Modulation Strategy for Dual-Active Bridge Converters

  • Byen, Byeng-Joo;Jeong, Byong-Hwan;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.137-146
    • /
    • 2018
  • This paper describes a single pulse-width modulation control strategy using the Single Pulse-Width Modulation (SPWM) method with a soft-switching technique for a wide range of output voltages from a bidirectional Dual-Active Bridge (DAB) converter. This method selects two typical inductor current waveforms for soft-switching, and proposes a rule that makes it possible to achieve soft-switching without any compensation algorithm from the waveforms. In addition, both the step-up and step-down conditions are analyzed. This paper verifies that the leakage inductance is independent from the rule, which makes it easier to apply in DAB converters. An integrated algorithm, which includes step-up and step-down techniques, is proposed. The results of experiments conducted on a 50-kW prototype are presented. The system efficiency is experimentally verified to be from 85.6% to 97.5% over the entire range.

Pulse-Width Modulation Strategy for Common Mode Voltage Elimination with Reduced Common Mode Voltage Spikes in Multilevel Inverters with Extension to Over-Modulation Mode

  • Pham, Khoa-Dang;Nguyen, Nho-Van
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.727-743
    • /
    • 2019
  • This paper presents a pulse-width modulation strategy to eliminate the common mode voltage (CMV) with reduced CMV spikes in multilevel inverters since a high CMV magnitude and its fast variations dv/dt result in bearing failure of motors, overvoltage at motor terminals, and electromagnetic interference (EMI). The proposed method only utilizes the zero CMV states in a space vector diagram and it is implemented by a carrier-based pulse-width modulation (CBPWM) method. This method is generalized for odd number levels of inverters including neutral-point-clamped (NPC) and cascaded H-bridge inverters. Then it is extended to the over-modulation mode. The over-modulation mode is implemented by using the two-limit trajectory principle to maintain linear control and to avoid look-up tables. Even though the CMV is eliminated, CMV spikes that can cause EMI and bearing current problems still exist due to the deadtime effect. As a result, the deadtime effect is analyzed. By taking the deadtime effect into consideration, the proposed method is capable of reducing CMV spikes. Simulation and experimental results verify the effectiveness of the proposed strategy.

Modified Digital Pulse Width Modulator for Power Converters with a Reduced Modulation Delay

  • Qahouq, Jaber Abu;Arikatla, Varaprasad;Arunachalam, Thanukamalam
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.98-103
    • /
    • 2012
  • This paper presents a digital pulse width modulator (DPWM) with a reduced digital modulation delay (a transport delay of the modulator) during the transient response of power converters. During the transient response operation of a power converter, as a result of dynamic variations such as load step-up or step-down, the closed loop controller will continuously adjust the duty cycle in order to regulate the output voltage. The larger the modulation delays, the larger the undesired output voltage deviation from the reference point. The three conventional DPWM techniques exhibit significant leading-edge and/or trailing-edge modulation delays. The DPWM technique proposed in this paper, which results in modulation delay reductions, is discussed, experimentally tested and compared with conventional modulation techniques.

Hybrid Pulse Width Modulation Strategy for Wide Speed Range in IPMSM with Low Cost Drives

  • Ahn, Han-woong;Go, Sung-chul;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.670-674
    • /
    • 2016
  • The control performance of hybrid PWM inverter using a phase current measurement is presented in this paper. The hybrid PWM technique consists of space vector pulse width modulation (SVPWM) and six-step voltage control operation. The SVPWM is performed to reduce the harmonic components in the low speed region, and the six-step modulation is applied to increase the maximum speed of the IPMSM in the high speed region. Therefore, it is possible to obtain a great performance in both the low speed range and high speed range. However, the six-step modulation cannot be completely implemented, since the inverter that includes the lag-shunt sensing method has an immeasurable current region. In this paper, a quasi-six-step modulation using a modified voltage vector is proposed. The validity and usefulness of the proposed PWM technique is verified by MATLAB/Simulink and experimental results.