• Title/Summary/Keyword: Pulse tube refrigerator

Search Result 53, Processing Time 0.035 seconds

Study of the performance characteristics of the Stirling type orifice pulse tube refrigerator (스터링헝 오리피스 맥동관 냉동기의 성능특성에 관한 연구)

  • 홍용주;박성제;김효봉;김양훈;최영돈
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.2
    • /
    • pp.63-67
    • /
    • 2002
  • In this study, the performance of the Stirling type orifice Pulse tube refrigerator (OPTR) with a linear compressor was investigated by experiment. The dynamic pressures at three points and a temperature at the cold heat exchanger are measured to explore the dependency of the orifice on the performance of the OPTR. The experimental results show that the opening of the orifice has significant effects on the no load temperature and cool down characteristics. The Pressure amplitude in Pulse tube decrease as the opening of the orifice increase, but the mass flow rate through the orifice and the electric input Power to the compressor increase. The results show that the operating frequency and charging Pressure does not affect on the no load temperature. The pressure amplitude in pulse tube decrease as the operating frequency increase or the charging Pressure decreased.

Numerical Analysis of a Double Inlet Pulse Tube Refrigerator (이중입구 맥동관냉동기의 수치적 해석)

  • Chai, W.B.;Jeong, K.S.;Choi, H.O.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.501-511
    • /
    • 1995
  • A numerical model for predicting the performance of gas distrubutor type double inlet pulse tube refrigerators has been developed. The model was based on adiabatic analysis and the losses of heat exchangers and regenerator were considered. Thermodynamic behavior of working fluid within a double inlet pulse tube refrigerator was investigated and the effects of design parameters, such as valve and orifice openings, cold heat exchanger temperature, frequency and pulse tube length, on the cooling capacity and COP were shown.

  • PDF

Investigation on-board pulse tube refrigerator for high temperature superconducting rotor (고온 초전도 회전자 냉각을 위한 탑재형 맥동관 냉동기 연구)

  • 남중원;정상권
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.316-319
    • /
    • 2003
  • Cryogenic refrigerator system is necessary for cooling the superconducting rotor. Among the various cryogenic refrigerator systems, on-board hybrid pulse tube cryocooler is designed for cooling the superconducting rotor. Hybrid pulse tube cryocooler is composed of pulse tube cryocooler and Stirling cryocooler. This Stirling cryocooler precools the middle point of regenerator to obtain lower temperature at cold part of pulse tube cryocooler. In this paper, only Stirling cryocooler is on-boarded then rotated by motor for various rotating speeds and heat loads at cold part of Stilting cryocooler. Through this experiment the feasibility of the on-board cryocooler is investigated.

  • PDF

The Cycle Analysis of 4 Valve-type Pulse Tube Refrigerator (4 밸브형 맥동관 냉동기의 사이클 해석)

  • Cho, Kyung-Chul;Lee, Sang-Won;Lim, Young-Hun;Kim, Soo-Yun;Jung, Pyung-Suk
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.636-641
    • /
    • 2001
  • In this paper, we constructed four valve type pulse tube refrigerator and found the characteristic of orifice (needle valve) opening for using phase shifter and optimum cycle time - The valve timing was controlled by the digital timers. The experimental results showed the optimum frequence and cycle time at operating conditions. The results showed that the optimum process time existed and the rate was same at each operating frequence. The no- load temperature of the refrigerator was 85K.

  • PDF

A study on the in-line type inertance tube pulse tube cryocooler for cooling Superconductor filter

  • Park, Seong-Je;Hong, Yong-Ju;Kim, Hyo-Bong;Kim, Seon-Young;Jung, Woo-Seok
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.4
    • /
    • pp.46-50
    • /
    • 2004
  • The Experimental results of the in-line type inertance tube pulse tube cryocooler for cooling superconductor RF filter are presented in this paper. The pulse tube refrigerator, which has no moving parts at its cold section, is attractive in obtaining higher reliability, simpler construction, and lower vibration than any other small refrigerators. The purpose of this study is to analyze the characteristics of in-line type inertance tube pulse tube refrigerator (IPTR), and to get main factor to improve the performance of the in-line type IPTR. Firstly, design parameters of the in-line IPTR are discussed by ARCOPTR program, and then to find optimal conditions of in-line type IPTR, cool down characteristics according to the variations of the charging pressure, inertance tube volume, regenerator volume and pulse tube volume are measured by the experiment. The lowest temperature of the cold end was about 50 K. Cooling capacity was the highest in the charging pressure of 32 atm. and 5W at 72K. On the other hand, COP of the in-line type IPTR was the highest in the charging pressure of 21 atm. and 0.018 at 77K.

Numerical Analysis of an Orifice Pulse Tube Refrigerator (오리피스 맥동관 냉동기의 수치적 해석)

  • Lee, K.S.;Jeong, E.S.;Choi, H.O.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.282-290
    • /
    • 1994
  • A numerical model for the analysis and design of orifice pulse tube refrigerators has been developed. Heat transfer coefficient and friction factors in the model vary with time, and the real physical properties such as thermal conductivity and viscosity were used to improve the accuracy of the model. Thermodynamic behavior of the working fluid within pulse tube refrigerators was investigated and the effect of design parameters, such as reservoir volume, orifice diameter, and NTU of regenerator, on the cooling load and COP was shown.

  • PDF

Experimental research on 2 stage GM-type pulse tube refrigerator for cryopump

  • Park, Seong-Je;Ko, Jun-Seok;Hong, Yong-Ju;Kim, Hyo-Bong;Yeom, Han-Kil;Koh, Deuk-Yong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.2
    • /
    • pp.29-33
    • /
    • 2010
  • The experimental results of the 2 stage Gifford-McMahon(GM) type pulse tube refrigerator (PTR) or cryopump are presented in this paper. The objectives of his study are to develop design technology of the integral type 2 stage PTR which rotary valve is directly connected to he hot end of the regenerator and acquire its improved performance. Design of the 2 stage PTR is conducted by FZKPTR(Forschungs Zentrum Karlsruhe Pulse Tube Refrigerator) program for the design of pulse tube refrigerators. The fabricated PTR has U-type configuration and incorporates orifice valve, double-inlet valve and reservoir as phase control mechanism. Rotary valve is used to make pulsating pressure and is directly connected to inlet of $1^{st}$ stage regenerator. From experiments, cooling performance map and pressure waveform at each point were measured for different operating frequencies. Experimental results show the best cooling performance with 2 Hz operation in spite of small pressure amplitude. The lowest temperatures of the 2 stage PTR were 16.9 K at the second stage and 58.0 K at the first stage. The cooling capacities achieved were 14.4 W at 79 K, the first stage and 3.6 W at 29 K, the second stage.

A Study for Performance Improvements in the Coaxial Type Stirling Pulse Tube Cryocooler (동축형 스털링 맥동관 냉동기의 성능개선에 관한 연구)

  • Park, S.J.;Hong, Y.J.;Kim, H.B.;Kim, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1329-1334
    • /
    • 2004
  • The most compact and convenient pulse tube cryocooler for practical applications is the coaxial type. It can replace Stirling cryocooler without any change to the Dewar or the connection to the cooled devices. The experimental results of the coaxial inertance tube pulse tube cryocooler for cooling superconductor RF filter are presented in this paper. To find optimal conditions of inertance tube pulse tube cryocooler, no load temperature according to the variations of inertance tube volume, reservoir volume are measured, and the cool down characteristics at the particular conditions are presented. In case of the coaxial type inertance tube pulse tube refrigerator, cool down time is the lowest in the inertance tube diameter of 1.3 mm and inertance tube length of 1900 mm and lowest temperature is 112K. This results are not satisfactory for practical applications. So, We propose vacuum insulation between regenerator and pulse tube in the Stirling type coaxial pulse tube cryocooler. Stirling type coaxial pulse tube cryocooler with the vacuum insulation between regenerator and pulse tube was designed and manufactured by KIMM(Korea Institute of Machinery and Materials). The optimal conditions will be tested for Stirling type coaxial pulse tube cryocooler with the vacuum insulation between regenerator and pulse tube.

  • PDF

Net Enthalpy Transport in Pulse Tube Refrigerators

  • Kang, Young-Goo;Jeong, Eun-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.7
    • /
    • pp.33-44
    • /
    • 1999
  • Enthalpy transport in a pulse tube was investigated by two-dimensional analysis of mass, momentum and energy equations assuming that the axial temperature gradient in the pulse tube was constant. The time-averaged second-order conservation equations of mass, momentum and energy were used to show the existence of steady mass and enthalpy streaming. Effects of the axial temperature gradient, velocity amplitude ratio, and heat transfer between the gas and the tube wall On the steady mass and enthalpy streaming were shown. Enthalpy loss due to the steady mass streaming is zero for basic and orifice pulse tube refrigerators, but it is proportional to the axial temperature gradient and steady mass flow rate through a pulse tube for double inlet pulse tube refrigerators.

  • PDF

Enthalpy transport in pulse tube refrigerators (맥동관냉동기의 앤탈피이동)

  • 강영구;정은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.180-192
    • /
    • 1998
  • Enthalpy transport in a pulse tube was investigated by two-dimensional analysis of mass, momentum and energy equations assuming that the axial temperature gradient in the pulse tube is constant. Time-averaged second-order conservation equations of mass, momentum and energy were used to show the existence of steady mass streaming and enthalpy streaming. Effects of axial temperature gradient, velocity amplitude ratio and heat transfer between the gas and the wall on the steady mass streaming and enthalpy streaming were shown. Enthalpy loss due to the steady mass streaming is zero for basic and orifice pulse tube refrigerators, but it is proportional to the axial temperature gradient and steady mass flow rate through a pulse tube for double inlet pulse tube refrigerators.

  • PDF