• Title/Summary/Keyword: Pulse tube

Search Result 253, Processing Time 0.027 seconds

Enthalpy Flow Loss by Steady Mass Streaming in Pulse Tube Refrigerators (맥동관냉동기의 정상상태 질량흐름에 의한 엔탈피손실)

  • 백상호;정은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.7
    • /
    • pp.623-631
    • /
    • 2000
  • Effects of the taper angle and the angular velocity of a pulse tube on the enthalpy flow loss associated with the steady mass streaming were analysis by two-dimensional analysis of a pulse tube with variable cross-section. It was shown that the steady mass flux can lead to a large steady second-order temperature. The enthalpy flow loss associated with the steady mass streaming increases as the angular velocity increases. For a pulse tube where the viscous penetration depth is far thinner than the inner radius, the enthalpy flow loss can be significantly reduced by tapering the pulse tube since both the steady mass flux and the steady second-order temperature decrease as the taper angle increase.

  • PDF

Two-Dimensional Analysis Model of a Pulse Tube (맥동관의 2차원 해석모델)

  • 백상호;정은수
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.157-160
    • /
    • 1999
  • Enthalpy transport in a pulse tube was investigated by two-dimensional analysis of mass, momentum and energy equations of the gas as well as energy conservation of the tube wall. The mean temperature of the gas and the tube wall was obtained directly by assuming that the outer surface of a pulse tube is adiabatic. Effects of operating frequency, tube wall thickness, velocity ratio and velocity phase angle between both ends of a pulse tube on net enthalpy flow were shown.

  • PDF

An Experimental Study of Three Buffer Pulse Tube Refrigerator (Three buffer 맥동관 냉동기에 관한 실험적 연구)

  • 박성제;고득용;김효봉;신완순
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.189-193
    • /
    • 1999
  • An experimental study was carried out to improve the cooling capacity and performance of the pulse tube refrigerator. Three buffer pulse tube refrigerator was designed and fabricated, and the experimental apparatus was constructed. This paper presents operating process of three buffer pulse tube refrigerator and results obtained with the performance test. The cooldown characteristics and load characteristics are described. The lowest temperature measured in three pulse tube refrigerator was 88K and the cooling capacity at the optimum operating condition was 27W at 120K.

  • PDF

Experimental Study on the Performance Characteristics for the Three Types of the Pulse Tube Refrigerators (맥동관 냉동기의 유형별 성능특성에 관한 실험적 연구)

  • Park, Seong-Je;Go, Deuk-Yong
    • 연구논문집
    • /
    • s.24
    • /
    • pp.27-39
    • /
    • 1994
  • lower vibration than in any other small refrigerators. The experimental results of three types of pulse tube refrigerators are presented in this paper. The objectives of this study are to develop the design technology of the double inlet pulse tube refrigerator and acquire its application method. As a preliminary experiment, the refrigeration performances of the basic, orifice and double inlet pulse tube refrigerator were investigated. The lowest temperature obtained in this experiment was 34.4K. The refrigeration capacity at the optimum operating condition of the double inlet pulse tube refrigerator was 23W at 80K.

  • PDF

An Experimental Investigation of the G-M type Pulse Tube Refrigerator

  • Park, Seong-Je;Koh, Deuk-Yong;Yeom, Han-Kil;Hong, Yong-Ju;Kim, Hyo-Bong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.2
    • /
    • pp.40-45
    • /
    • 2004
  • The experimental results of the G-M (Gifford-McMahon) type pulse tube refrigerators are presented in this paper. The pulse tube refrigerator, which has no moving parts at its cold section, is attractive in obtaining higher reliability, simpler construction, and lower vibration than any other small refrigerators. The objectives of this study are to develop the design technology of the G-M type pulse tube refrigerator and acquire its application methods for replacing G-M cryocooler. As a preliminary test, the refrigeration performances of the basic, orifice, and double inlet pulse tube refrigerators were investigated. The lowest temperature obtained in the one-stage pulse tube refrigerator was 34.4K and the refrigeration capacity at the optimum operation condition was 23W at 80K. And the lowest temperature of the second stage cold head in the two-stage pulse tube refrigerators was 18.3K and the refrigeration capacities at optimum condition were 0.45W at 20K and 20W at 80K, respectively. Finally, the lowest temperature obtained in the three-stage pulse tube refrigerator was 29.8K and the refrigeration capacity at the optimum operation condition was 1.3W for 40K and 5W for 70K.

Orientation dependence of GM-type pulse tube refrigerator (GM형 맥동관 냉동기의 저온부 경사도에 따른 냉각 성능 특성 연구)

  • Ko, Jun-Seok;Kim, Hyo-Bong;Park, Seong-Je;Hong, Yong-Ju;Yeom, Han-Kil;Lee, Chung-Soo;Kang, In-Su;Koh, Deuk-Yong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.48-52
    • /
    • 2012
  • This paper describes experimental study on the orientation dependence of GM-type pulse tube refrigerator with helium and neon as working gas. A pulse tube refrigerator generates refrigeration work with gas expansion by gas displacer in the pulse tube. The pulse tube is only filled with working gas and there exists secondary flow due to large temperature difference between cold-end and warm-end. The stability of secondary flow is affected by orientation of cold-head and thus cooling performance is deteriorated by gas mixing due to secondary flow. In this study, a single stage GM-type pulse tube with orifice valve as a phase control device is fabricated and tested. The fabricated pulse tube refrigerator is tested with two different working gases of helium and neon. First, optimal valve opening and operating frequency are determined with experimental results of no-load test. And then, the variation of no-load temperature as orientation angle of cold-head is measured for two different working gases. Effect of orientation dependence of cold-head as working gas is discussed with experimental results.

Experimental Study on a GM-type Two-Stage Pulse Tube Refrigerator for Cryopump Applications

  • Lee, S.J.;Hong, Y.J.;Park, S.J.;Kim, H.B.;Kwon, S.B.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.2
    • /
    • pp.35-38
    • /
    • 2007
  • A single-stage and two-stage pulse tube refrigerators have been designed for cryopump application. The different diameters of pulse tube and regenerator have been investigated at single-stage pulse tube refrigerator(PTR). Experiments have been performed on single-stage PTR to reach minimum temperature with optimum valve opening at a few frequencies. And the two-stage pulse tube refrigerators have been assembled with tested single-stage pulse tube and tested. When orifice turn is opened to 9 and double inlet is opened to 3 at a single-stage, the lowest temperature of 33.7 K is achieved. The cooling capacity at single-stage is 38 W at temperature of 80 K. A two-stage pulse tube refrigerator has 16.3K at the second stage and 59.7K at the first stage. The cooling capacity achieved is 16.5 W at 80 K, the first stage and 0.6 W at 20 K, the second stage. Some details on the design of pulse tube refrigerator and the experimental apparatus are given.

An Experimental Study on Performance of the Inertance Pulse Tube Refrigerator using a Small Compressor (소형 압축기를 이용한 관성관형 맥동관 냉동기의 성능 특성에 대한 실험적 연구)

  • Kim Hongseong;Jeong Sangkwon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.552-559
    • /
    • 2005
  • This paper describes an experimental study on the inertance pulse tube refrigerator using a small compressor. The purpose of this experimental study is to identify the performance of the inertance pulse tube refrigerator for various operating conditions and to obtain the optimum configuration. The dead volume effect is verified by two experimental apparatuses with different dead volumes between the compressor and the aftercooler. The refrigerator of the smaller dead volume shows better performance. The influence of operating frequency and charging pressure on the performance of the refrigerator is experimentally investigated. Reducing the regenerator mesh size improves the performance of the refrigerator. Finally, the inertance pulse tube refrigerator has maximum cooling capacity at the specific combination of the pulse tube length and the inertance tube length. The loss analysis is used to analyze and predict the optimum condition of the pulse tube refrigerator.

Performance improvement of 2 stage GM-type pulse tube Cryocooler for cryopump

  • Park, Seong-Je;Koh, Deuk-Yong;Suh, Jeong-Kyoon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.4
    • /
    • pp.30-35
    • /
    • 2011
  • This paper describes experimental study and performance improvement of 2 stage Gifford-McMahon (G-M) type pulse tube cryocooler for cryopump. The objective of this study is to improve the efficiency of 2 stage pulse tube cryocooler for substituting 2 stage G-M cryocooler used in cryopump. The target cooling capacities are 5 W at 20 K and 35 W at 80 K for the $1^{st}$ and the $2^{nd}$ stage, respectively. These values are good cooling capacities for vacuum level in medium size ICP 200 cryopump. Design of the 2 stage pulse tube cryocooler is conducted by FZKPTR(Forschungs Zentrum Karlsruhe Pulse Tube Refrigerator) program. In order to improve the performance of 2 stage pulse tube cryocooler, U-type pulse tube cryocooler is fabricated and connecting tubes are minimized for reducing dead volumes and pressure losses. Also, to get larger capacities, orifice valves and double inlet valves are optimized and the compressor of 6 kW is used. On the latest unit, the lowest temperatures of 2 stage pulse tube cryocooler are 42 K ($1^{st}$ stage) and 8.3 K ($2^{nd}$ stage) and the cooling capacities are 40 W at 82.9 K ($1^{st}$ stage) and 10 W at 20.5 K ($2^{nd}$ stage) with 6.0 kW of compressor input power. This pulse tube cryocooler is suited for commercial medium size cryopump. In performance test of cryopump with 2 stage pulse tube cryocooler, pumping speed for gaseous nitrogen is 4,300 L/s and the ultimate vacuum pressure is $7.5{\times}10^{-10}$ mbar.

Suppression of performance degradation due to cold-head orientation in GM-type pulse tube refrigerator

  • Ko, Junseok;Kim, Hyobong;Park, Seong-Je;Hong, Yong-Ju;Koh, Deuk-Yong;Yeom, Hankil
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.4
    • /
    • pp.50-53
    • /
    • 2012
  • This paper describes experimental study on GM-type pulse tube refrigerator (PTR). In a PTR, the pulse tube is only filled with working gas and there exists secondary flow due to a large temperature difference between cold-end and warm-end. The stability of secondary flow is affected by orientation of cold-head and thus, the cooling performance is deteriorated by gas mixing due to secondary flow. In this study, a single stage GM-type pulse tube refrigerator is fabricated and tested. The cooing performance of the fabricated PTR is measured as varying cold-head orientation angle and the results are used as reference data. Then, we divided interior space of pulse tube into three segments, and fixed the various size of screen mesh at interface of each segment to suppress the performance degradation due to secondary flow. For various configuration of pulse tube, no-load test and heat load test are carried out with the fixed experimental condition of charging pressure, operating frequency and orifice valve turns. From experimental results, the fine screen mesh shows the effective suppression of performance degradation for the large orientation angle, but the use of screen mesh cause the loss of cooling capacity rather than the case of no insertion into pulse tube. It should be compromised whether the use of screen mesh in consideration of the installation limitation of a GM-type pulse tube refrigerator.