• Title/Summary/Keyword: Pulse design algorithm

Search Result 111, Processing Time 0.025 seconds

Optimal Control of Nonlinear Systems Using The New Integral Operational Matrix of Block Pulse Functions (새로운 블럭펄스 적분연산행렬을 이용한 비선형계 최적제어)

  • Cho Young-ho;Shim Jae-sun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.4
    • /
    • pp.198-204
    • /
    • 2003
  • In this paper, we presented a new algebraic iterative algorithm for the optimal control of the nonlinear systems. The algorithm is based on two steps. The first step transforms nonlinear optimal control problem into a sequence of linear optimal control problem using the quasilinearization method. In the second step, TPBCP(two point boundary condition problem) is solved by algebraic equations instead of differential equations using the new integral operational matrix of BPF(block pulse functions). The proposed algorithm is simple and efficient in computation for the optimal control of nonlinear systems and is less error value than that by the conventional matrix. In computer simulation, the algorithm was verified through the optimal control design of synchronous machine connected to an infinite bus.

Algebraic Observer Design for Descriptor Systems via Block-pulse Function Expansions (블록펄스함수 전개를 이용한 Descriptor 시스템의 대수적 관측기 설계)

  • 안비오
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.6
    • /
    • pp.259-265
    • /
    • 2001
  • In the last two decades, many researchers proposed various usages of the orthogonal functions such as Walsh, Haar and BPF to solve the system analysis, optimal control, and identification problems from and algebraic form. In this paper, a simple procedure to design and algerbraic observer for the descriptor system is presented by using block pulse function expansions. The main characteristic of this technique is that it converts differential observer equation into an algerbraic equation. And furthermore, a simple recursive algorithm is proposed to obtain BPFs coefficients of the observer equation.

  • PDF

A Design of Adaptive Equalizer using the Walsh-Block Pulse Functions and the Optimal LMS Algorithms (윌쉬-블록펄스 함수와 최적 LMS알고리즌을 이용한 적응 등화기의 설계)

  • 안두수;김종부
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.8
    • /
    • pp.914-921
    • /
    • 1992
  • In this paper, we introduce a Walsh network and an LMS algorithm, and show how these can be realized as an adaptive equalizer. The Walsh network is built from a set of Walsh and Block pulse functions. In the LMS algorithm, the convergence factor is an important design parameter because it governs stability and convergence speed, which depend on the proper choice of the convergence facotr. The conventional adaptation techniques use a fixed time constant convergence factor by the method of trial and error. In this paper, we propose an optimal method in the choice of the convergence factor. The proposed algorithm depends on the received signal and the output of the Walsh network in real time.

  • PDF

Low sidelobe digital doppler filter bank synthesis algorithm for coherent pulse doppler radar (Coherent 레이다 신호처리를 위한 저부엽 도플러 필터 뱅크 합성 알고리즘)

  • 김태형;허경무
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.3
    • /
    • pp.612-621
    • /
    • 1996
  • In this paper, we propose the low sidelobe digital FIR doppler filter bank synthesis algorithm through the Gradient Descent method and it can be practially appliable to coherent pulse doppler radar signal processing. This algorithm shows the appropriate calculation of tap coefficients or zeros for FIR transversal fiter which has been employed in radar signal processor. The span of the filters in the filter bank be selected at the desired position the designer want to locate, and the lower sidelobe level that has equal ripple property is achieved than one for which the conventional weithtedwindow is used. Especially, when we implemented filter zeros as design parameters it is possible to make null filter gain at zero frequency intensionally that would be very efficient for the eliminatio of ground clutter. For the example of 10 tap filter synthesis, when filter coefficients or zeros are selected as design parameters the corresponding sidelobelevel is reducedto -70db or -100db respectively and it has good convergent characteristics to the desired sidelobe reference value. The accuracy ofapproach to the reference value and the speed of convergence that show the performance measure of this algorithm are tuned out with some superiority and the fact that the bandwidth of filter appears small with respect to one which is made by conventional weighted window method is convinced. Since the filter which is synthesized by this algorithm can remove the clutter without loss of target signal it strongly contributes performance improvement with which detection capability would be concerned.

  • PDF

Optimal Control of Nonlinear Systems Using Block Pulse Functions (블럭펄스 함수를 이용한 비선형 시스템의 최적제어)

  • Jo, Yeong-Ho;An, Du-Su
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.3
    • /
    • pp.111-116
    • /
    • 2000
  • In this paper, we presented a new algebraic iterative algorithm for the optimal control of the nonlinear systems. The algorithm is based on tow steps. The first step transforms optimal control problem into a sequence of linear optimal control problem using the quasilinearization method. In the second step, TPB(two point boundary condition problem) is solved by algebraic equations instead of differential equations using BPF(block pulse functions). The proposed algorithm is simple and efficient in computation for the optimal control of nonlinear systems. In computer simulation, the algorithm was verified through the optimal control design of Van del pole system and Volterra Predatory-prey system.

  • PDF

Pulse Shape Design for Ultra-Wideband Radios Using Projections onto Convex Sets (POCS를 이용한 초광대역 무선통신의 펄스파형 설계)

  • Lee, Seo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3A
    • /
    • pp.311-318
    • /
    • 2008
  • We propose new pulse shapes for FCC-compliant ultra-wideband (UWB) radios. The projections onto convex sets (POCS) technique is used to optimize temporal and spectral shapes of UWB pulses under the constraints of all of the desired UWB signal properties: efficient spectral utilization under the FCC spectral mask, time-limitedness, and good autocorrelation. Simulation results show that for all values of the pulse duration, the new pulse shapes not only meet the FCC spectral mask most efficiently, but also have nearly the same autocorrelation functions. It is also observed that our truncated (i.e., strictly time-limited) pulse shapes outperform the truncated Gaussian monocycle in the BER performance of binary TH-PPM systems for the same pulse durations. The POCS technique provides an effective method for designing UWB pulse shapes in terms of its inherent design flexibility and joint optimization capability.

A Study on Welding Process Algorithm through Real-time Current Waveform Analysis (실시간 공정신호를 통한 용접공정 알고리즘에 관한 연구)

  • Yoon, Jin Young;Lee, Young Min;Shin, Soon Cheol;Choi, Hae Woon
    • Journal of Welding and Joining
    • /
    • v.33 no.4
    • /
    • pp.24-29
    • /
    • 2015
  • The current waveform was analysed to monitor the weld quality in real time process. The acquired current waveform was discretely analysed for the top and bottom limits of peaks as well as the pulse frequency measurement. Fast Fourier Transform was implemented in the program to monitor the pulse frequency in real time. The developed algorithm or program was tested for the validation purpose. The cross-section of weld profile was compared to the current waveform profile to correlate the monitored signal and the actual parts. Pulse frequency was also used as auxiliary tool for the quality monitoring. Based on the results, it was possible to evaluate the quality of welding by measure the current waveform profile and frequency measurement.

The Design of Model Reference Adaptive Controller via Block Pulse Functions (블럭펄스 함수를 이용한 기준 모델 적응 제어기 설계)

  • Kim, Jin-Tae;Kim, Tai-Hoon;Lee, Myung-Kyu;Ahn, Doo-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • This paper proposes a algebraic parameter determination of MRA(Model Reference Adaptive Control) controller using block Pulse functions and block Pulse function's differential operation. Generally, adaption is performed by solving differential equations which describe adaptive low for updating controller parameter. The proposes algorithm transforms differential equations into algebraic equation, which can be solved much more easily inn a recursive manner. We believe that proposes methods are very attractive and proper for parameter estimation of MRAC controller on account of its simplicity and computational convergence.

Study on durability of densified high-performance lightweight aggregate concrete

  • Wang, H.Y.
    • Computers and Concrete
    • /
    • v.4 no.6
    • /
    • pp.499-510
    • /
    • 2007
  • The densified mixture design algorithm (DMDA) was employed to manufacture high-performance lightweight concrete (LWAC) using silt dredged from reservoirs in southern Taiwan. Dredged silt undergoing hydration and high-temperature sintering was made into a lightweight aggregate for concrete mixing. The workability and durability of the resulting concrete were examined. The LWAC made from dredged silt had high flowability, which implies good workability. Additionally, the LWAC also had good compressive strength and anti-corrosion properties, high surface electrical resistivity and ultrasonic pulse velocity as well as low chloride penetration, all of which are indicators of good durability.

Modeling Jamming Avoidance Response of Pulse-type Weakly Electric Fish (전기물고기의 방해 회피 반응 모델링과 응용)

  • Soh, JaeHyun;Kim, DaeEun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.924-929
    • /
    • 2015
  • In this paper, we suggest a phase difference algorithm inspired by weakly electric fish. Weakly electric fish is a fish which generates electric field though its electric organ in the tail. The weakly electric fish search for prey and detect an object by using electrolocation. The weakly electric fish have Jamming Avoidance Response (JAR) to avoid jamming signal. One of pulse-type weakly electric fish Gymnotus carapo also have JAR to reduce the probability of coincidence of pulses. We analyze this response signal and design the phase difference algorithm. We expect that simple algorithm inspired by weakly electric fish can be used in many engineering fields.