• 제목/요약/키워드: Pulse Resolution

검색결과 331건 처리시간 0.029초

A Cyclic CMOS Time-to-Digital Converter

  • Choi, Jin-Ho;Kim, Ji-Hong
    • Journal of information and communication convergence engineering
    • /
    • 제5권2호
    • /
    • pp.112-115
    • /
    • 2007
  • A CMOS TDC(time-to-digital converter) is proposed which has a simple cyclic structure. The proposed TDC consists of pulse-shrinking elements, D latches and D flip-flops. The operation is based on pulse-shrinking of the input pulse. The resolution of digital output can be easily improved by increasing the number of the pulse-shrinking elements, D latches and D flip flops. The TDC performance is improved in viewpoints of power consumption and chip area. Simulation results are shown to illustrate the performance of the proposed TDC circuit.

An Efficient Pulse Width Measurement Method using Multiphase Clock Signals for Capacitive Touch Switches

  • Seong, Kwang-Su
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권4호
    • /
    • pp.773-779
    • /
    • 2013
  • We propose an efficient method to measure a pulse width using multiphase clock signals generated from a ring oscillator. These clocks, which have the same frequency and are evenly spaced, give multiple rising edges within a clock cycle. Thus, it is possible to measure a pulse width more accurately than with existing single clock-based methods. The proposed method is applied to a capacitive touch switch. Experimental results show that the capacitive touch switch with the proposed method gives a 118 fF resolution, which is 6.4 times higher than that of the touch switch with a single clock-based pulse width measurement method.

펨토초 레이저의 합성파를 이용한 절대거리 측정 (Absolute Distance Measurement using Synthetic Wavelength of Femto-second Laser)

  • 김윤석;진종한;주기남;김승우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.569-572
    • /
    • 2005
  • Technological feasibility of using recently-available femtosecond ultra short pulse lasers for advanced precision length metrology is investigated with emphasis on absolute distance measurements with $10{\mu}m$ ??resolution over extensive ranges. The idea of using femtosecond lasers for the measurement of absolute distances is based on the fact that a short pulse train is a mode-locked combination of discrete monochromatic light components spanning a wide spectral bandwidth. The synthetic wavelength is created from the repetition frequency, $f_r$ of the femtosecond laser and for more precise resolution, higher-order harmonics of the repetition frequency may be selected as the synthetic wavelength by using appropriate electronic filters.

  • PDF

난류유동 해석을 위한 Dynamic PIV 시스템의 개발 (Development of a Dynamic PIV System for Turbulent Flow Analysis)

  • 이상준;장영길;김석
    • 한국가시화정보학회지
    • /
    • 제3권1호
    • /
    • pp.71-77
    • /
    • 2005
  • Information on temporal evolution of whole velocity fields are essential for physical understanding of a complicated turbulent flow. Due to advances of high-speed imaging technique, laser and electronics, high-speed digital cameras and high-repetition pulse lasers are commercially available in nowadays. A dynamic PIV system that can measure consecutive instantaneous velocity field with 1K$\times$ 1K pixels resolution at 1 fps was developed. It consists of a high-speed CMOS camera and a high-repetition Nd:YLF pulse laser. Theoretically, it can capture velocity fields at 20 fps with a reduced spatial resolution. In order to validate its performance, the dynamic PIV system was applied to a turbulent jet of which Reynolds number is about 3000. The particle images of 1024$\times$512 pixels were captured at a sampling rate of 4 KHz. The dynamic PIV system measured successfully the temporal evolution of instantaneous velocity fields of the turbulent jet, from which spectral analysis of turbulent structure was also feasible.

  • PDF

초음파 펄스 도플러 속도계의 성능 개선에 관한 연구 (A Study on the Improvement in Performance of Ultrasonic Pulsed Doppler Velocimeter)

  • 이은방;이상집
    • 한국항해학회지
    • /
    • 제20권3호
    • /
    • pp.85-95
    • /
    • 1996
  • In the velocimeter, the ultrasonic pulse signal is used for measuring the profile velocity of moving targets distributed in space because of the merits of its high distance resolution and harmless affect to the human body. The velocity reading in conventional ultrasonic pulsed velocimeter depends on the wave pattern reflecting the spatial distribution of scatters and includes observational error due to the signal processing of analyzing pulse signal. In this paper, we evaluate an influence of the received waveform of pulsed signal on the velocity information by setting a model. Subsequently, in order to improve the distance resolution and to obtain precise velocity information without the influence of the spatial distribution of scatterers, we propose a new method for the analysis of Doppler pulsed signal, in which the pulsed signal is transformed into a phase function with local data. Finally, it is confirmed that the performance of the velocimeter is more improved in the proposed method than in the conventional one.

  • PDF

초고속 전자 현미경의 개발과 극복 과제 (Challenges in the development of the ultrafast electron microscope)

  • 박두재
    • 진공이야기
    • /
    • 제2권1호
    • /
    • pp.17-20
    • /
    • 2015
  • In this article, a historical and scientific review on the development of an ultrafast electron microscope is supplied, and the challenges in further improvement of time resolution under sub-picosecond or even sub-femtosecond scale is reviewed. By combining conventional scanning electron microscope and femtosecond laser technique, an ultrafast electron microscope was invented. To overcome its temporal resolution limit which originates from chromatic aberration and Coulomb repulsion between individual electrons, a generation of electron pulse via strong-field photoemission has been investigated thoroughly. Recent studies reveal that the field enhancement and field accumulation associated with the near-field formation at sharply etched metal nanoprobe enabled such field emission by ordinary femtosecond laser irradiation. Moreover, a considerable acceleration reaching 20 eV with near-infrared laser and up to 300 eV acceleration with mid-infrared laser was observed, and the possibility to control the amount of acceleration by varying the incident laser pulse intensity and wavelength. Such findings are noteworthy because of the possibility of realizing a sub-femtosecond, few nanometer imaging of nanostructured sample.in silicon as thermoelectric materials.

TIME-DOMAIN TECHNIQUE FOR FRONT-END NOISE SIMULATION IN NUCLEAR SPECTROSCOPY

  • Neamintara, Hudsaleark;Mangclaviraj, Virul;Punnachaiya, Suvit
    • Nuclear Engineering and Technology
    • /
    • 제39권6호
    • /
    • pp.717-724
    • /
    • 2007
  • A measurement-based time-domain noise simulation of radiation detector-preamplifier (front-end) noise in nuclear spectroscopy is described. The time-domain noise simulation was performed by generating "noise random numbers" using Monte Carlo's inverse method. The probability of unpredictable noise was derived from the empirical cumulative distribution function via the sampled noise, which was measured from a preamplifier output. Results of the simulated noise were investigated as functions of time, frequency, and statistical domains. Noise behavior was evaluated using the signal wave-shaping function, and was compared with the actual noise. Similarities between the response characteristics of the simulated and the actual preamplifier output noises were found. The simulated noise and the computed nuclear pulse signal were also combined to generate a simulated preamplifier output signal. Such simulated output signals could be used in nuclear spectroscopy to determine energy resolution degradation from front-end noise effect.

의공학적 기법에 의한 간암의 검진과 치료경과의 정량 : 칼만 필터링 기법에 의한 초음파 영상 처리 (Bioengineering Approaches to Quantitation of Diagnosis and Treatment Monitoring for Patients with Liver Cancer: Ultrasonic Image Processing by Kalman Filtering)

  • 우광방;남상일
    • 대한의용생체공학회:의공학회지
    • /
    • 제6권1호
    • /
    • pp.5-12
    • /
    • 1985
  • In this paper Kalman filtering technique is applied to ultrasound signal to improve resolution capability, Ivhlch is in use of diagnostic imaging systems. The main advantage of Kalman filter algorithm for the analysis of reflected ultrasound signal is its recursive structure which can be easily adapted to tlme varing system. Because soft-tissues, such as liver, act as distributed acoustic low-pass filters which continually change the propagating pulse. tIne can put to practical use above advantage to find a suitable signal generallng model. In state-space description of the system, the 6th order system produces tl)e 1)esc spectral approximation to the source pulse As a result of spectrum analysis, 6th order estimator for two closely spaced ((p.5 mm) reflectors enhances resolution by 4dB-lOdB. By using this result, the possibility to detect even minute tumor is demonstrated.

  • PDF

코히어런트 펄스열을 갖는 계단 주파수 레이더를 이용한 이동표적의 고해상도 거리 추정 분석 (Analysis of High Resolution Range Estimation for Moving Target Using Stepped Frequency Radar with Coherent Pulse Train)

  • 심재훈;배건성
    • 전기전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.599-604
    • /
    • 2018
  • 계단 주파수 레이더는 송신 펄스의 주파수를 일정한 간격으로 증가시켜 넓은 합성 대역폭을 생성함으로써 고해상도 거리추정을 구현하는 방식이다. 그러나 이동표적의 경우에는 거리-도플러 결합 현상으로 인해 정확한 거리 추정이 어렵게 된다. 본 논문에서는 초기에 코히어런트 펄스열을 갖는 계단 주파수 레이더 파형을 이용하여 이동표적의 속도를 추정하고, 거리-도플러 결합 현상을 보상함으로써 얻어지는 고해상도 거리 추정 과정을 분석하고, 시뮬레이션을 통해 이를 검증하였다.

고속 트립토판 자가형광 이미징을 위한 시공간적 집중 기반의 라인 스캐닝 이광자 현미경 개발 (Development of line-scanning two-photon microscopy based on spatial and temporal focusing for tryptophan based auto fluorescence imaging)

  • 이준호;남효석;김기현
    • 한국가시화정보학회지
    • /
    • 제11권2호
    • /
    • pp.41-45
    • /
    • 2013
  • Two-photon microscopy (TPM) is minimally-invasive 3D fluorescence microscopy based on nonlinear excitation, and TPM can visualize cellular structures based on auto-fluorescence. Line-scanning TPM is one of high-speed TPM methods without sacrificing the image resolution by using spatial and temporal focusing. In this paper, we developed line-scanning TPM based on spatial and temporal focusing for auto-fluorescence imaging by exciting the tryptophan. Laser source for this system was an optical parametric oscillator (OPO) and it made near 570 nm femtosecond pulse laser. It had 200fs pulse width and 1.72 nm bandwidth, so that the achievable depth resolution was 2.41um and field of view (FOV) is 10.8um. From the characterization, our system has 3.0 um depth resolution and 12.3 um FOV. We visualized fixed leukocyte cell sample and compared with point scanning system.