• Title/Summary/Keyword: Pulse RADAR

Search Result 266, Processing Time 0.03 seconds

Design and Response Analysis of Wideband Monopulse Radar System Robust to Noise Jamming Signal (잡음 재밍 신호에 강인한 광대역 모노펄스 레이더 시스템 설계 및 응답 특성 분석)

  • Shin, Bohun;Yang, Haejoon;Kim, Changyeol;Park, Soryoung;Noh, Sanguk;Nam, Ilku
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.94-102
    • /
    • 2018
  • In this paper, the wideband mono-pulse radar using AGC and limiter is designed. The output response characteristics of the mono-pulse radar using AGC and limiter are analyzed, respectively. In addition, the output response for jamming input signals is analyzed. The range tracking loop in the mono-pulse radar has robust output response to the noise jamming input signal. Although the output settling response of the AGC-based mono-pulse radar is larger than that of the limiter-based mono-pulse radar, the AGC-based mono-pulse radar has robustness to the noise jamming input signal due to feedback loop.

Tracking of Radar Pulse Train Using Kalman Filter (칼만 필터를 사용한 레이더 펄스열 추적)

  • 김용우;신욱현;이효섭;김홍필;양해원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.176-176
    • /
    • 2000
  • Generally, discrete-time processing is applied to the uniformly-sampled signals. But, radars emit pulse trains with irregular time instances. In this paper, we formulate the radar pulse train as a stochastic discrete-time dynamic linear model. The estimation task can be done via linear signal processing using Kalman Filter and some considerations. As a result, we can estimate the pulse repetition interval of a pulse train and predict the time instances of the next pulses to be received.

  • PDF

Independent PRF Generation and Control for Frequency Phase Calibration on Mono-pulse Radar at a Remote Location (원격지에서 모노펄스 레이더의 주파수 위상 교정을 위한 독립된 펄스반복주파수 생성 및 제어)

  • Yang, Jaewon;Yoo, Seungoh;Yoon, Jaehyuk;Lee, Dongju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.368-373
    • /
    • 2021
  • This paper presents a method of independent pulse repetition frequency(PRF) generation and control for frequency phase calibration on mono-pulse radar at a remote location. In order to generate an independent PRF signal of 320[Hz], pulse width modulation(PWM) of 16-bit timer/counter was applied. For a precision control of PRF signal, 16-bit timer/counter interrupt was changed for each period. Therefore, average frequency of PRF could be controlled by 0.0001[Hz]. To calibrate a frequency phase of mono-pulse radar at a remote location, the proposed PRF generator with a precision control of frequency was used regardless of receiving PRF signal from a radar. For the verification of the proposed PRF generator, theoretical analysis and experimental results are included.

Jamming Effect of Phase-Coded Pulse Compression Radar (위상코드 펄스압축 레이더의 재밍 효과)

  • Lim, Joong-Soo
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.5
    • /
    • pp.125-129
    • /
    • 2019
  • This paper describes the jamming effect of phase-coded pulse compression(PCPC) radar. Barker code radar, a typical PCPC radar, separates transmission pulses into 13 or 31 small pulses and phase modulates and transmits each pulse signal to increase radar detection efficiency and reduce the influence of jamming. Generally, when the radar is subjected to jamming, the detection distance becomes shorter and the detection error rate becomes higher. In the case of noise jamming or carrier jamming on the PCPC radar, the jamming effect is very small for no phase-coded convergence. However, the jamming effect is large in the case of synchronous jamming using the pulse-coded signal as a jamming signal with DRFM. It can be seen that the jamming effect increases when the storage time of the pulse-coded signal is prolonged. This study is considered to be useful for PCPC radar and EW jamming system design.

A Helicopter-borne Pulse Doppler Radar Signal Processor Development using High Speed Multi-DSP (고속 Multi-DSP를 이용한 헬기탑재 펄스 도플러 레이다 신호처리기 개발)

  • Kwag, Young-Kil;Choi, Min-Su;Jeun, In-Pyung;Hwang, Gwang-Yeon;Lee, Kang-Hoon;Lee, Jae-Ho
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.23-28
    • /
    • 2005
  • An airborne radar is an essential aviation electronic system of the helicopter to perform various missions in all-weather environments. This paper presents the results of the design and implementation of the airborne pulse doppler radar signal processor using high multi-DSP for the multi-function radar capability such as short-range, midium-range, and long-range depending on the mission of the vehicle. Particularly, the radar signal processor is developed using two DSP boards in parallel for the various radar signal processing algorithm. The key algorithms include LFM chirp waveform-based pulse compression, MTI clutter filter, MTD processor, adaptive CFAR, and clutter map. Especially airborne moving clutter Doppler spectrum compensation algorithm such as TACCAR is implemented for the multi-mode airborne radar system. The test results shows the good Doppler spectral separation for the clutter and the moving target in the flight test environment using helicopter.

  • PDF

Radar identification by scan period validation (스캔주기 유효성 판별에 의한 레이더 식별)

  • Kim, Gwan-Tae
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.17-22
    • /
    • 2021
  • Radar signal analysis of electronic warfare is a technique for identifying a radar type by signal parameters(direction, radion frequency, pulse repetition interval, pulse width, scan period..) extracted from a received radar pulse. However as the modern radar and new threat environments is advanced, radar identification ambiguity arises in the process of identifying the types of radars. In this paper, we analyze the problems of the existing method and propose a new method. This technique determines the validity of the scan period by the difference in the arrival time of the radar pulse and the minimum number of scan period discrimination. Experiments proved that the scan cycle results are derived regardless of the RMS((Root Mean Square) of the input amplitude.

Development of New Radar Beacon

  • Hayashi, Shogo;Sato, Tatsuo;Tanaka, Senji;Suzuki, Tsutomu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.291-296
    • /
    • 2006
  • The restrictions concerning the use of the radio waves have become severe, the marine radar with low spurious is being developed. Therefore, it is necessary to develop aids to navigation as a radar beacon can respond to new type of marine radar. Because the system of radar in the future is an indetermination, new radar beacon should correspond to old and new radar system during a transition period. New radar beacon that is also able to respond to pulse radar, pulse compression radar and FM-CW radar were considered in these years in Japan. The sign of the response of Morse code in a new system is generated by the delay synthesis system. Computer simulation and actual examination using trial circuit were curried out. A big possibility was set up in the development of the new radar beacon that was able to correspond to old and new radar system. These results and the state of new radar beacon is mentioned in this paper.

  • PDF

A Helicopter-borne Pulse Doppler Radar Signal Processor Development (헬기탑재 펄스 도플러 레이다 신호처리기 개발)

  • Kwag, Young-Kil;Jeun, In-Pyung;Choi, Min-Su;Hwang, Gwang-Yeon;Lee, Kang-Hoon;Lee, Jae-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.443-446
    • /
    • 2005
  • This paper presents the results of the design and implementation of the airborne pulse doppler radar signal processor using high multi-DSP for the multi-function radar capability such as short-range, midium-range, and long-range depending on the mission of the vehicle. Particularly, the radar signal processor is developed using two DSP boards in parallel for the various radar signal processing algorithm. The key algorithms include LFM chirp waveform-based pulse compression, MTI clutter filter, MTD processor, adaptive CFAR, and clutter map. Especially airborne moving clutter Doppler spectrum compensation algorithm such as TACCAR is implemented for the multi-mode airborne radar system. The test results shows the good Doppler spectral separation for the clutter and the moving target in the flight test environment using helicopter

  • PDF

Drone Detection with Chirp-Pulse Radar Based on Target Fluctuation Models

  • Kim, Byung-Kwan;Park, Junhyeong;Park, Seong-Jin;Kim, Tae-Wan;Jung, Dae-Hwan;Kim, Do-Hoon;Kim, Taihyung;Park, Seong-Ook
    • ETRI Journal
    • /
    • v.40 no.2
    • /
    • pp.188-196
    • /
    • 2018
  • This paper presents a pulse radar system to detect drones based on a target fluctuation model, specifically the Swerling target model. Because drones are small atypical objects and are mainly composed of non-conducting materials, their radar cross-section value is low and fluctuating. Therefore, determining the target fluctuation model and applying a proper integration method are important. The proposed system is herein experimentally verified and the results are discussed. A prototype design of the pulse radar system is based on radar equations. It adopts three different pulse modes and a coherent pulse integration to ensure a high signal-to-noise ratio. Outdoor measurements are performed with a prototype radar system to detect Doppler frequencies from both the drone frame and blades. The results indicate that the drone frame and blades are detected within an instrumental maximum range. Additionally, the results show that the drone's frame and blades are close to the Swerling 3 and 4 target models, respectively. By the analysis of the Swerling target models, proper integration methods for detecting drones are verified and can thus contribute to increasing in detectability.

The Development of the Multi-function Radar Signal Processor Having the High Spurious Free Dynamic Range (불요신호 특성이 우수한 다기능레이더 신호처리기 개발)

  • Lee, Hee-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.140-146
    • /
    • 2010
  • The multi-function radar can detect and track the low RCS targets. For this purpose the multi-function radar uses the pulse train waveform. because this waveform has high dynamic range and good SNR(Signal to Noise Ratio). But the spurious signals can also be detected by processing the pulse train waveform. Thus the multi-function radar signal processor must have the high SFDR(Spurious Free Dynamic Range). This paper describes the development of the multi-function radar signal processor having the high SFDR.