• Title/Summary/Keyword: Pulse Interpolator

Search Result 17, Processing Time 0.024 seconds

Development of two axis contouring control system based on stepping motor (스텝핑 모우터를 이용한 2축 윤곽제어 장치 개발에 관한 연구)

  • 김교형;이기설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.228-231
    • /
    • 1987
  • Microprocessor-based software DDA interpolator is developed and applied to two axis contouring control of X-Y table. Developed assembly program is composed of feedrate, linear and circular DDA interpolation routines. Reference-pulse type of open-loop stepping motor control system in which the micro-computer produces a sequence of reference pulses for each axis of motion is adopted. To test performance of the developed program, X-Y table drive system based on stepping motor and shaft encoder is designed. Contouring error of the system in linear and circular path is within .+-.0.2 mm.

  • PDF

Design of a 2-axis interpolator using FPGA (FPGA를 이용한 2축 보간기의 설계)

  • Yeo, Su-Jin;Kim, Jong-Eun;Won, Jong-Baek;Park, Jong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.596-599
    • /
    • 2003
  • In this paper, we designed the digital pulse motor control chip including a circular interpolation function. The proposed algorithm in this paper is a nonparametric cure generation algorithm (Jordan's algorith) and a very simple algorithm. So the design for this algorithm used a small number of gates. Also an average error is fairly low. The max output speed is 4Mpps(Pulse per second), the max input frequency is 16MHz and the chip is useful for the stepping and servo motors. The software contains one or two, and many axes linear interpolation algorithm and two axes circular interpolation algorithm.

  • PDF

Development of Software Interpolators for PC-based NC Machine Tools (PC-based NC 공작기계의 소프트웨어 보간기 개발)

  • Yang, Min-Yang;Hong, Won-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.99-105
    • /
    • 1996
  • Increasing demands on precision machining of free-form surfaces have necessitated the tool to move not only with position error as small as possible, but also with smoothly varying feedrates. In this paper, linear, circular and spline interpolators were developed in reference-pulse type using PC. M-SAM and M-DAM were designed by the comparison and analysis of previous interpolation methods. Spline interpolator was designed to follow the free-form curves. To apply to the real cutting process, constant feedrate compensation and acceleration-deceleration compensation were conceived. Finally, its performance was tested using retrofitted milling machine. As a result, new interpolation algorithm is favorable in precision machining of free-form curves.

  • PDF

Study on Flowmeter Proving Errors of a Small Volume Prover (소형 푸루버의 유량계 검증 오차 연구)

  • 백종승;임기원;최용문
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.259-266
    • /
    • 1990
  • Leaks at the piston seal and the by-pass port of a small volume prover have relatively large influence on the proving accuracy in comparison with a conventional ball prover. The pulse interpolator, which is to increase the discrimination, is affected by the characteristic of the flowmeter signal. In this study, a small volume prover of the double cylinder type was designed in order to study the pulse interpolation error as well as the leak error. The basic volume of the prover determined by a water draw method was about 9.68L. Experimental results revealed that interpolation data attained by the repeated piston pass for turbine meters at a fixed flowrate may be treated effectively by applying a statistical method. It was possible to limit the pulse interpolation error less than .+-. 0.02% at the 95% confidence level. However, in the case of the bulk meter, if failed to achieve the required repeatability level because of the pulse characteristics. The basic volume change appeared to be independent of the piston velocity within the .+-. 0.05% of tolerance.

A study on development of plasma-arc cutting system with computer-numerical control (컴퓨터수치제어(CNC) 플라즈마 아아크 절단장치 개발에 관한 연구)

  • 노태정;나석주;나규환
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.60-69
    • /
    • 1990
  • Plasma arc cutting is a fusion cutting process in which a gas-constricted arc is employed to produce a high-temperature, high-velocity plasma jet on the workpiece. This process provides some advantages such as increased cutting velocity, excellent working accuracy and the ability to cut special materials (widely used stainless steels and Al-alloys, for example), when compared with iconventional oxyfuel gas cutting. From the view point of price and reliability of the power source, plasma arc cutting has also some distinct advantages over laser beam cutting. High-speed machines with NC or CNC systems are needed for the plasma arc or laser beam cutting process, while for oxyfuel gas cutting, low-speed machines with copying templates or optical-shape tracking sensors can be applied. The low price and high flexibility of the microprocessor arc contributing more and more the application of CNC system in the plasma arc cutting process, as in other manufacturing fields. From these points of view, a microprocessor-based plasma arc cutting system was developed by using a reference-pulse system, and its performance was tested. The interpolating routines were programmed in the assembly language for saving the memory volume and improving the compouting speed, which has an intimate relationship with the available cutting velocity.

  • PDF

A 10-bit CMOS Time-Interpolation Digital-to-Analog Converter (10-비트 CMOS 시간-인터폴레이션 디지털-아날로그 변환기)

  • Kim, Myngyu;Jang, Young-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.225-228
    • /
    • 2012
  • In this paper, a 10-bit digital-to-analog converter (DAC) with small area is proposed. The 10-bit DAC consists of a 8-bit decoder, a 2-bit time-interpolator, and a buffer amplifier. The proposed time-interpolation is achieved by controlling the charging time through a low-pass filter composed of a resistor and a capacitor. To implement the accurate time-interpolator, a control pulse generator using a replica circuit is proposed to minimize the effect of the process variation. The proposed 10-bit Time-Interpolation DAC occupies 61 % of the conventional 10-bit resistor-string DAC. The proposed DAC is designed using a $0.35{\mu}m$ CMOS process with a 3.3 V supply. The simulated DNL and INL are +0.15/-0.21 LSB and +0.15/-0.16 LSB, respectively.

  • PDF

Field-Programmable Gate Array-based Time-to-Digital Converter using Pulse-train Input Method for Large Dynamic Range (시간 측정범위 향상을 위한 펄스 트레인 입력 방식의 field-programmable gate array 기반 시간-디지털 변환기)

  • Kim, Do-hyung;Lim, Han-sang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.137-143
    • /
    • 2015
  • A delay-line type time-to-digital converter (TDC) implemented in a field-programmable gate array (FPGA) is most widely owing due to its simple structure and high conversion rate. However, the delay-line type TDC suffers from nonlinearity error caused by the long delay-line because its time interval measurement range is determined by the length of the used delay line. In this study, a new TDC structure with a shorter delay line by taking a pulse train as an input is proposed for improved time accuracy and efficient use of resources. The proposed TDC utilizes a pulse-train with four transitions and a transition state detector that identifies the used transition among four transitions and prevents the meta-stable state without a synchronizer. With 72 delay cells, the measured resolution and maximum non-linearity were 20.53 ps, and 1.46 LSB, respectively, and the time interval measurement range was 5070 ps which was enhanced by approximately 343 % compared to the conventional delay-line type TDC.