• Title/Summary/Keyword: Pulse Generator

Search Result 445, Processing Time 0.026 seconds

Breakdown Properties in Physiological Saline by High Voltage Pulse Generator

  • Byeon, Yong-Seong;Song, Ki-Baek;Uhm, Han-Sup;Shin, Hee-M.;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.333-333
    • /
    • 2011
  • We have investigated the breakdown properties in liquids by high voltage pulse system. High voltage pulse power system is consisted of the Marx-generator with two capacitors (0.5 ${\mu}F$, withstanding voltage is 40 kV), to which the charging voltage can be applied to maximum 30 kV DC, spark gap switch and charging resistor of 20 $M{\Omega}$. We have made use of tungsten pin electrodes of anode-cathode (A-K), which are immersed into the liquids. The breakdown voltage and current signals are measured by high voltage probe (Tektronix P6015A) and current monitor (IPC CM-1.S). Especially the high speed breakdown or plasma propagation characteristics in the pulsed A-K gap have been investigated by using the high speed ICCD camera. We have measured the electron temperature through the Boltzmann plot method from the breakdown spectrums. Here the A-K gap has been changed by 1 mm, 2 mm, and 3 mm. The used liquids are distilled water and solution of salt (0.9 %). The output voltage and current signals at breakdown in distilled water are shown to be bigger than those in saline solution. The breakdown voltage and current characteristics in liquids will be discussed in accordance with A-K gap distances. It is also found that the electron temperatures and plasma densities in liquids are decreased in conformity with A-K gap.

  • PDF

Characteristic Evaluation of Medical X-Ray Using High-Voltage Generator with Inverter System (인버터방식의 고전압 발생장치를 이용한 의료용 X선 기기의 특성평가)

  • Kim, Young-Pyo;Cheon, Min-Woo;Park, Yong-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.36-41
    • /
    • 2011
  • Medical X-ray has been brought many changes according to the rapid development of high technology. Especially, for high-voltage generator which is the most important in X-ray generation the traditional way is to use high-voltage electric transformers primarily. However, since it is large and heavy and the ripple rate of DC high-voltage applied to X-ray tube is too big, it has a disadvantage of low X-ray production efficiency. To solve these problems, the studies about high-voltage power supply are now proceeding. At present, the high-voltage generator that generates high-voltage by making high frequency using inverter control circuit consisting of semiconductor device is mainly used. High-voltage generator using inverter has advantages in the diagnosis using X-ray including high performance with short-term use, miniaturization of power supply and ripple reduction. In this study, the X-ray high-voltage device with inverter type using pulse width modulation scheme to the control of tube voltage and tube current was designed and produced. For performance evaluation of produced device, the control signal analysis, irradiation dose change and beam quality depending on the load variation of tube voltage and tube current were evaluated.

An SCR Thyristor Based Three-Phase Voltage Disturbance Generator

  • Han, Heung-Soo;Jung, Jae-Hun;Nho, Eui-Cheol;Kim, In-Dong;Kim, Heung-Geun;Chun, Tae-Won
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.372-378
    • /
    • 2012
  • This paper deals with a 3-phase voltage disturbance generator for a performance test of custom power devices such as dynamic voltage restorers (DVR), dynamic uninterruptable power supplies (UPS), etc. The operating principle of the proposed circuit is described in each mode of voltage sag, swell, outage, and unbalance. The main components of the proposed disturbance generator are silicone controlled rectifier (SCR) thyristors, variable autotransformers, and transformers. Therefore, the disturbance generator can be implemented with a considerably low cost compared to the conventional pulse width modified (PWM) inverter and converter type generators. Furthermore, it has good features of high reliability with simple structure, high efficiency caused by no PWM switching of the SCR thyristors, and easy control with a wide variation range. To verify the validity of the proposed scheme, simulations and experiments are carried out.

A Noncoherent UWB Communication System for Low Power Applications

  • Yang, Suck-Chel;Park, Jung-Wan;Moon, Yong;Lee, Won-Cheol;Shin, Yo-An
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.3
    • /
    • pp.210-216
    • /
    • 2004
  • In this paper, we propose a noncoherent On-Off Keying (OOK) Ultra Wide Band (UWB) system based on power detection with noise power calibration for low power applications. The proposed UWB system achieves good bit error rate performance which is favorably comparable to that of the system using the ideal adaptive threshold, while maintaining simple receiver structure, In addition, low power Analog Front-End (AFE) blocks for the proposed noncoherent UWB transceiver are proposed and verified using CMOS technology. Simulation results on the pulse generator, delay time generator and 1-bit Analog-to-Digital (AID) converter show feasibility of the proposed UWB AFE system.

Test Results of Pulsed Power Supply for Nonthermal Plasma Process (저온 플라즈마 공정용 펄스발생 전원장치의 성능시험)

  • Jang, S.D.;Byun, Y.C.;Cho, M.H.;Shin, D.N.
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1574-1575
    • /
    • 2011
  • The application of a pulsed power system is being extended to an environmental and industrial field. The non-destructive gaseous pollutants from industrial plants such as power generation plants and incinerators can be processed by applying high voltage pulses with a fast rising time (a few nanoseconds) and short duration (nano to microseconds) in a pulsed corona discharge reactor. The pulsed plasma generator with a triggered switch has been developed. Its corona current in load can be adjusted by applied voltage and repetition rate. We investigated the performance of the pulsed plasma generator by analyzing the concentration of ozone in small reactor. This paper describes the electrical characteristics of the pulse generator with a voltage of 30 kV at repetition rate of 50 PPS. In addition, we briefly discuss a configuration of the system and initial test results.

  • PDF

Characterization and Performance Evaluation of Advanced Aircraft Electric Power Systems

  • Eid, Ahmad;El-Kishky, Hassan;Abdel-Salam, Mazen;El-Mohandes, Mohamed T.
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.563-571
    • /
    • 2010
  • A model of an advanced aircraft electric power system is developed and studied under variable-speed constant-frequency (VSCF) operation. The frequency of the generator's output voltage is varied from 400-Hz to 800-Hz for different loading scenarios. Power conversions are obtained using 12-pulse power converters. To reduce the harmonic contents of the generator output waveforms, two high-pass passive filters are designed and installed one at a time at the generator terminals. The performance of the two passive filters is compared according to their losses and effectiveness. The power quality characteristics of the studied VSCF aircraft electric power system are presented and the effectiveness of the proposed filter is demonstrated through compliance with the newly published aircraft electrical standards MIL-STD-704F.

Modeling and Control of Three-Phase Self-Excited Induction Generator Connected to Grid

  • Chandrasekaran, Natarajan;Karthikeyan, A
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.5
    • /
    • pp.265-272
    • /
    • 2017
  • This paper presents the dynamic modeling, analysis, and control of an AC/DC/AC-assisted, self-excited induction generator connected to the grid. The dynamic model includes wind turbine models with pitch control, gear boxes, self-excited induction generators, excitation capacitance, inductive load models, controlled six-pulse rectifiers, and novel state-space models of a grid-connected inverter. The system has been simulated to verify its capabilities of buildup voltage, stator flux response, stator phase current, electromagnetic torque, and magnetizing inductance variation during both the dynamic and steady states with a variable-speed prime mover. The complete setup of the above dynamic models was simulated using MATLAB/SIMULINK.

PI-CCC Based Switched Reluctance Generator Applications for Wind Power Generation Using MATLAB/SIMULINK

  • Kaliyappan, Kannan;Padmanabhan, Sutha
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.230-237
    • /
    • 2013
  • This paper presents a novel nonlinear model of Switched Reluctance Generator (SRG) based on wind Energy Conversion system. Closed loop control with based Proportional Integrator current Chopping Control machine model is used. A Power converter in SRG can be controlled by using PI-CCC proposed model, and can be produced maximum power efficiency and minimize the ripple contents in the output of SRG. A second power converter namely PI based controlled PWM Inverter is used to interface the machine to the Grid. An effective control technique for the inverter, based on the pulse width modulation (PWM) scheme, has been developed to make the line voltage needs less power switching devices and each pair of turbine the generated active power starts increasing smoothly. This proposed control scheme feasibility and validity are simulated on SIMULINK/SIM POWER SYSTEMS only.

Optimal Excitation Angles of a Switched Reluctance Generator for Maximum Output Power

  • Thongprasri, Pairote;Kittiratsatcha, Supat
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1527-1536
    • /
    • 2014
  • This paper investigates the optimal values of turn-on and turn-off angles, and ratio of flux linkage at turn-off angle and peak phase current positions of optimal control for accomplishing maximum output power in an 8/6 Switched Reluctance Generator (8/6 SRG). Phase current waveform is analyzed to determine optimal excitation angles (optimal turn-on and turn-off angles) of the SRG for maximum output power which is applied from a nonlinear magnetization curve in terms of control variables (dc bus voltage, shaft speed, and excitation angles). The optimal excitation angles in single pulse mode of operation are proposed via the analytical model. Simulated and experimental results have verified the accuracy of the analytical model.

A Study on High Frequency Resonant Type X-ray Generator (고주파 공진형 방식 X-선 발생장치에 관한 연구)

  • Yoo, Dong-Wook;Ha, Sung-Woon;Baek, Joo-Won;Kim, Jong-Soo;Kim, Hack-Seong;Won, Chung-Yuen
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.209-211
    • /
    • 1995
  • This paper is concerned with High Frequency, High Voltage Generator for X-ray using zero-voltage soft-switching PWM DC-DC high-power converter by Resonant method, which makes the most of the parastic LC parameters of high-voltage transformer link, for diagnostic X-ray power generator. The converter circuit basically utilizes phase-shift pulse width modulated series Resonant full-bridge PWM DC-DC high-power converter operating at a constant frequency;25kHz. The converter output regulation is digitally controlled using DSP (Digital Signal Processor) for obtaining a fast rising time and adjust output voltage within a wide load range.

  • PDF