• Title/Summary/Keyword: Pulse Electrochemical

Search Result 180, Processing Time 0.026 seconds

Ultrasonic electrochemical deposition and characterization of Ni-SiC nanocomposite coatings

  • Gyawalia, Gobinda;Woo, Dong-Jin;Lee, Soo-Wohn
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.58-58
    • /
    • 2011
  • Nickel-ceramics nanocomposite coatings can be applied as the wear resistance coating, corrosion protection of underlying materials, and decorative coatings. Hence, Nickel based nanocomposite coatings, especially Ni-SiC, have been extensively studied in recent years. However, more often agglomeration problem of the nanoparticles in the nickel matrix can cause deterioration of the mechanical properties rather than improvement. The homogeneous distribution of the nanoparticles in the matrix coating is still being challenging. In this experiment, electrochemical deposition of Ni-SiC composite coating was done in presence of ultrasound. The effects of different ultrasonic powers and frequencies on the nanoparticle dispersion were studied. The electrodeposition was carried out in nickel sulfamate bath by applying pulse current technique. Compared to the conventional mechanical stirring technique to prevent nanoparticles agglomeration and sedimentation during composite electrodeposition, the aid of ultrasonic dispersion along with mechanical stirring has been found to be more effective not only for the nanoparticles dispersion, but also for the mechanical properties of the electrodeposited coatings. Nanoparticles were found to be distributed homogeneously with reduced agglomeration. The microstructure of the composite coating has also been changed, allowing some random orientations of the nickel crystallite grain growths, smooth surface, and finer grains. As a consequence, better mechanical properties of the composites were observed.

  • PDF

Electrochemical Quantitative Analysis of Mn(II) for the Study of Mn-Dissolution Behavior of LiMn2O4 (LiMn2O4의 Mn용출 현상 연구를 위한 전기화학적 Mn(II) 정량 분석법)

  • Son, Hwa-Young;Lee, Min-Young;Ko, Hyoung-Shin;Lee, Ho-Chun
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.3
    • /
    • pp.131-137
    • /
    • 2011
  • A simple and rapid electrochemical method for the quantitative analysis of $Mn^{2+}$ ion is demonstrated with a view to examine the $Mn^{2+}$ dissolution behavior of $LiMn_2O_4$. The method described herein is based on the oxidation reaction of $Mn^{2+}$ to $Mn^{4+}(MnO_2)$ in aqueous buffer solution. Under the optimum condition (pH 8.9 0.04 M $NH_3-NH_4Cl$ buffer solution and glassy carbon working electrode), the linear range of $5{\mu}M-100{\mu}M$ (0.275-5.5 ppm) [$Mn^{2+}$] is obtained for the Linear sweep voltammetry(LSV) and $0.2{\mu}M-10{\mu}M$ (0.011-0.55 ppm) [$Mn^{2+}$] for the differential pulse voltammetry (DPV), respectively. It is also noted that the oxidation reaction of $Mn^{2+}$ ion is reduced with increasing amount of the electrolyte ($LiPF_6$, EC, EMC) added to the measuring solution, which is found to be mainly due to $LiPF_6$ and EC rather than EMC.

Electrochemical Immunoassay for Detecting Hippuric Acid Based on the Interaction of Osmium-Antigen Conjugate Films with Antibody on Screen Printed Carbon Electrodes

  • Choi, Young-Bong;Jeon, Won-Yong;Kim, Hyug-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1485-1490
    • /
    • 2012
  • An electrochemical immunoassay based on osmium-hippuric acid (HA) conjugate films onto the electrode is presented for the detection of urinary HA. This is the first report on the use of the oxidative electropolymerization of 5-amino-1,10-phenanthroline (5-$NH_2$-phen) for immobilizing an antigen, osmium-conjugated HA. As a redox mediator, [Os(5-amino-1,10-phenanthroline)$_2$(4-aminomethylpyridine-HA)Cl]$^{+/2+}$ (Os-phen-HA) was successfully synthesized and electropolymerized onto the screen-printed carbon electrodes (SPCEs). The interaction between osmium-HA conjugate films and antibody-HA ($anti$-HA) was performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The electrical signals were linearly proportional to urinary HA in the range of 0.1-5.0 mg/mL, which is sufficient for use as an immunosensor using a cutoff concentration of 2.0 mg/mL in urine samples. The proposed electrochemical immunoassay method can be extended to various applications for detecting a wide range of different small antigens in the health care area.

Electrochemical Behavior of Mordant Red 19 and its Complexes with Light Lanthanides

  • Sang Kwon Lee;Taek Dong Chung;Song-Ju Lee;Ki-Hyung Chjo;Young Gu Ha;Ki-Won Cha;Hasuck Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.567-574
    • /
    • 1993
  • Mordant Red 19(MR19) is reduced at mercury electrode at -0.67 V vs. Ag/AgCl with two electrons per molecule in pH 9.2 buffer by differential pulse polarography and linear sweep voltammetry. The peak potential is dependent on the pH of solution. The exhaustive electrolysis, however, gives 4 electrons per molecule because of the disproportionation of the unstable hydrazo intermediate. The electrochemical reduction of lanthanide-MR19 complexes is observed at more cathodic potential than that of free ligand. The difference in peak potentials between complex and free ligand varies from 75 mV for $La^{3+}$ to 165 mV for $Tb^{3+}$ and increases with increasing the atomic number of lanthanide. The electrochemical reduction of lanthanide complexes with MR19 is due to the reduction of ligand itself, and it can be potentially useful as an indirect method for the determination of lanthanides. The shape of i-E curves and the scan rate dependence indicates the presence of adsorption and the adsorption was confirmed by potential double-step chronocoulometry and the effect of standing time. Also the surface excess of the adsorbed species and diffusion coefficients are determined. The composition of the complex is determined to be 1 : 2 by spectrophotometric and electrochemical methods.

Determination of Ascorbic Acid, Acetaminophen, and Caffeine in Urine, Blood Serum by Electrochemical Sensor Based on ZnO-Zn2SnO4-SnO2 Nanocomposite and Graphene

  • Nikpanje, Elham;Bahmaei, Manochehr;Sharif, Amirabdolah Mehrdad
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.173-187
    • /
    • 2021
  • In the present research, a simple electrochemical sensor based on a carbon paste electrode (CPE) modified with ZnO-Zn2SnO4-SnO2 and graphene (ZnO-Zn2SnO4-SnO2/Gr/CPE) was developed for the direct, simultaneous and individual electrochemical measurement of Acetaminophen (AC), Caffeine (Caf) and Ascorbic acid (AA). The synthesized nano-materials were investigated using scanning electron microscopy, X-ray Diffraction, Fourier-transform infrared spectroscopy, and electrochemical impedance spectroscopy techniques. Cyclic voltammetry and differential pulse voltammetry were applied for electrochemical investigation ZnO-Zn2SnO4-SnO2/Gr/CPE, and the impact of scan rate and the concentration of H+ on the electrode's responses were investigated. The voltammograms showed a linear relationship between the response of the electrode for individual oxidation of AA, AC and, Caf in the range of 0.021-120, 0.018-85.3, and 0.02-97.51 μM with the detection limit of 8.94, 6.66 and 7.09 nM (S/N = 3), respectively. Also, the amperometric technique was applied for the measuring of the target molecules in the range of 0.013-16, 0.008-12 and, 0.01-14 μM for AA, AC and, Caf with the detection limit of 6.28, 3.64 and 3.85 nM, respectively. Besides, the ZnO-Zn2SnO4-SnO2/Gr/CPE shows an excellent selectivity, stability, repeatability, and reproducibility for the determination of AA, AC and, Caf. Finally, the proposed sensor was successfully used to show the amount of AA, AC and, Caf in urine, blood serum samples with recoveries ranging between 95.8% and 104.06%.

A Portable Potentiostat with Bluetooth Communication for Square wave Voltammetry Measurement (네모파 전압전류법 측정을 위한 블루투스 기반 휴대형 포텐쇼스탯)

  • Shim, Wonsik;Han, Ji-Hoon;Kim, Suyun;Kwon, Hyun Jeong;Pak, Jungho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.622-627
    • /
    • 2016
  • This paper describes the development of a portable potentiostat which can perform square wave voltammetry on electrochemical sensors and wireless transmission of the measured data to a smartphone using Bluetooth. The potentiostat consists of a square wave potential pulse generation circuit for applying the potential pulse to the electrochemical sensor, a reduction/oxidation (or redox) current measurement circuit, and Bluetooth for wireless data transmission to an Android-based smartphone. The measured data are then processed to show the output graph on the smart phone screen in real time. This data transformation into a graph is carried out by developing and installing a simple transformation application software in the Android-based smartphone. This application software also enables the user to set and change the measurement parameters such as the applied voltage range and measured current range at user's convenience. The square voltammetry output data measured with the developed portable potentiostat were almost same as the data of the commercial potentiostat. The measured oxidation peak current with the commercial potentiostat was $11.35{\mu}A$ at 0.26 V and the measured oxidation peak current with the developed system was $12.38{\mu}A$ at 0.25 V. This proves that performance of the developed portable measurement system is comparable to the commercial one.

Selective Electrochemical Reduction on the Imino Group of ${\alpha},{\beta}$-Dibenzyl N-Benzylidene L-Aspartate (${\alpha},{\beta}$-Dibenzyl N-Benzylidene L-Aspartate 의 Imino 기에 대한 선택적 전해환원반응)

  • Kim, Il-Kwang;Kim, Youn-Geun;Lee, Young-Haeng;Chai, Kyu-Yun
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.614-622
    • /
    • 1989
  • The electrochemical reduction of ${\alpha},{\beta}$-dibenzyl N-benzylidene L-aspartate in 0.1M LiCl ethanol solution was investigated by direct current (DC), differential pulse (DP) polarography, cyclic voltammetry and controlled potential coulometry(CPC). The irreversible reductive amination of imino group proceeded to form ${\alpha},{\beta}$-dibenyl N-benzyl L-aspartate by CEC or CE electrochemical reaction mechanism at the first reduction step (-0.92 volts vs. Ag-AgCl). The polarographic reduction wave was slightly suppressed due to inhibitory effect of micelle, while the irreversibility was increased according to the increase of Triton X-100 concentration. Upon the basis of product analysis and polarogram interpretation with pH change, possible CE electrode reaction mechanism was suggested.

  • PDF

Synthesis of 1-Benzyl-4-Iodomethyl-2-Azetidinone and Electrochemical Reduction on the Iodo Group (1-Benzyl-4-Iodomethyl-2-Azetidinone의 합성과 Iodo기에 대한 전기화학적 환원반응)

  • Kim Il Kwang;Lee Young Haeng;Lee Chai Ho;Chai Kyu Yun;Kim Yoon Geun
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.70-77
    • /
    • 1991
  • 1-Benzyl-4-iodomethyl-2-azetidinone(BIMA) was synthesized and its electrochemical reduction was investigated by direct current, differential pulse polarography, cyclic voltammetry and controlled potential coulometry. The irreversible two electron transfer on reductive dehalogenation of iodo group proceeded to form 1-benzyl-4-methyl-2-azetidinone by EEC electrode reaction mechanism at the first reduction step(-1.35 volts vs. Ag-AgCl). The polarographic reduction waves separated into two reduction steps due to anionic surfactant (sodium lauryl sulfate) effects, while the waves were shifted to the positive potential as the concentration of cationic surfactant (cetyltrimethylammonium bromide) increased. Upon the basis of results on the product analysis and interpretation of polarogram with pH variable, EEC electrochemical reaction mechanism was suggested.

  • PDF

Assessment of Corrosion Rate of Reinforcing Steel in Concrete Using Galvanostatic Pulse Transient Technique

  • So, Hyoung-Seok;Millard, Stephen Geoffrey
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.83-88
    • /
    • 2007
  • This paper discusses a method of measuring transient potential response of a corrosion interface to a small galvanostatic pulse perturbation for a rapid assessment of the corrosion rate of reinforcing steel in concrete structures. Measurements were taken on 100 mm sections of steel bars which were subjected to a wide range of corrosion conditions, from passive steel to actively corroding steel. The duration of the applied galvanostatic pulse was varied between 5s and 180s, and the lateral distance of the point of measurement on the steel bar varied from zero to 400 mm. The result of the electrochemical transient response was investigated using a typical sampling rate of 1 kHz. Analysis of the transient potential response to the applied galvanostatic pulse has enabled the separation of equivalent electronic components so that the components of a series of capacitances and resistances, whose values are dependent on the corrosion condition of the reinforcing steel, could be isolated. The corrosion rate was calculated from a summation of the separate resistive components, which were associated with the corrosion interface, and was compared with the corrosion rate obtained from linear polarization resistance (LPR) method. The results show that the galvanostatic pulse transient technique enables the components of the polarization resistance to be evaluated separately so as to give more reliable corrosion rate values than those obtained from the LPR method. Additionally, this paper shows how the galvanostatic pulse transient response technique can be implemented. An appropriate measurement time for passive and actively corroding reinforcing steel is suggested for the galvanostatic pulse transient response measurements in the field site.

Voltammetric Determination of Clenbuterol on Electrochemically Activated Glassy Carbon Electrode (전기 화학적으로 활성화된 glassy carbon 전극에서의 전압-전류 법을 이용한 Clenbuterol 측정)

  • Lee, Sohee;Piao, Yuanzhe
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.4
    • /
    • pp.216-221
    • /
    • 2014
  • A rapid and sensitive voltammetric method for the quantitative determination of Clenbuterol on electrochemically activated glassy carbon electrode has been developed. Using differential pulse voltammetry, the linear response range for the clenbuterol was between $1{\times}10^{-7}$ and $2{\times}10^{-5}M$, and the detection limit was $6{\times}10^{-9}M$ (S/N = 3). The relative standard derivation was 4.3% for $1{\times}10^{-6}M$ clenbuterol. Recoveries of 96% of the clenbuterol (n = 3) were obtained from urine spiked with different amounts in the ranges $5{\times}10^{-7}M$ and $1{\times}10^{-6}M$ by this method.