• Title/Summary/Keyword: Pulse Electrochemical

Search Result 182, Processing Time 0.022 seconds

A Facile Electrochemical Fabrication of Reduced Graphene Oxide-Modified Glassy Carbon Electrode for Simultaneous Detection of Dopamine, Ascorbic Acid, and Uric Acid

  • Yu, Joonhee;Kim, Tae Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.274-281
    • /
    • 2017
  • This paper describes the simple fabrication of an electrode modified with electrochemically reduced graphene oxide (ERGO) for the simultaneous electrocatalytic detection of dopamine (DA), ascorbic acid (AA), and uric acid (UA). ERGO was formed on a glassy carbon (GC) electrode by the reduction of graphene oxide (GO) using linear sweep voltammetry. The ERGO/GC electrode was formed by subjecting a GO solution ($1mg\;mL^{-1}$ in 0.25 M NaCl) to a linear scan from 0 V to -1.4 V at a scan rate of $20mVs^{-1}$. The ERGO/GC electrode was characterized by Raman spectroscopy, Fourier transform infrared spectroscopy, contact angle measurements, electrochemical impedance spectroscopy, and cyclic voltammetry. The electrochemical performance of the ERGO/GC electrode with respect to the detection of DA, AA, and UA in 0.1 M PBS (pH 7.4) was investigated by differential pulse voltammetry (DPV) and amperometry. The ERGO/GC electrode exhibited three well-separated voltammetric peaks and increased oxidation currents during the DPV measurements, thus allowing for the simultaneous and individual detection of DA, AA, and UA. The detection limits for DA, AA, and UA were found to be 0.46, 77, and $0.31{\mu}M$ respectively, using the amperometric i-t curve technique, with the S/N ratio being 3.

Synthesis of BaTiO3 Thin Film on Ti Electrode by the Current Pulse Waveform (펄스전류파형을 이용한 Ti 전극위에서 BaTiO3박막의 합성)

  • Kang, Jinwook;Tak, Yongsug
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.998-1003
    • /
    • 1998
  • $BaTiO_3$ thin film was electrochemically deposited on Ti electrode in a 0.4 M $Ba(OH)_2$ solution of $85^{\circ}C$ using a current pulse waveform. Both $BaTiO_3$ crystallinity and faradaic efficiency for the film formation were enhanced with the increase of cathodic current density and pulse time. Based on the surface analysis and electrochemical studies, it was suggested that, during cathodic pulsed, the surface pH increase due to the reduction of $H_2O$ accelerates the structural changes of Ti oxides which were formed during anodic cycle. Prior to experiments, Ti oxides were intentionally grown in 0.1 M $H_2SO_4$ solution and the effect of initial oxide film thickness on the $BaTiO_3$ film formation was investigated. The migration of $Ti^{+4}$ ions through the oxide film was retarded with the increase of film thickness and it was observed that the crystallization of $BaTiO_3$ was only limited to the defect area of surface oxides.

  • PDF

Modified Glassy Carbon Electrode with Polypyrrole Nanocomposite for the Simultaneous Determination of Ascorbic acid, Dopamine, Uric acid, and Folic Acid

  • Ghanbari, Khadijeh;Bonyadi, Sepideh
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.68-83
    • /
    • 2020
  • A fast and simple method for synthesis of CuxO-ZnO/PPy/RGO nanocomposite by electrochemical manner have been reported in this paper. For testing the utility of this nanocomposite we modified a GCE with the nanocomposite to yield a sensor for simultaneous determination of four analytes namely ascorbic acid (AA), dopamine (DA), uric acid (UA), and folic acid (FA). Cyclic voltammetry (CV) and Differential pulse voltammetry (DPV) selected for the study. The modified electrode cause to enhance electron transfer rate so overcome to overlapping their peaks and consequently having the ability to the simultaneous determination of AA, DA, UA, and FA. To synthesis confirmation of the nanocomposite, Field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and electrochemical impedance spectroscopy (EIS) were applied. The linearity ranges were 0.07-485 μM, 0.05-430 μM, 0.02-250 μM and 0.022-180 μM for AA, DA, UA, and FA respectively and the detection limits were 22 nM, 10 nM, 5 nM and 6 nM for AA, DA, UA, and FA respectively Also, the obtained electrode can be used for the determination of the AA, DA, UA, and FA in human blood, and human urine real samples.

Electrochemical Machining Using Tungsten Microelectrode (텅스텐 미세 전극을 이용한 전해 가공)

  • Ryu, Shi-Hyoung;Yu, Jong-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.134-140
    • /
    • 2009
  • The feasibility of electrochemical drilling and milling on stainless steel are investigated using tungsten microelectrode with $10{\mu}m$ in diameter. For the development of environmentally friendly and safe electrochemical process, citric acid solution is used as electrolyte. A few hundred nanoseconds duration pulses are applied between the microelectrode and work material for dissolution localization. Tool fracture by Joule heating, micro welding, capillary phenomenon, tool wandering by the generated bubbles are observed and their effects on micro ECM are discussed. Occasionally, complex textures including micro pitting corrosion marks appeared on the hole inner surface. Metal growth is also observed under the weak electric conditions and it hinders further dissolutions for workpiece penetration. By adjusting appropriate pulse and chemical conditions, micro holes of $37{\mu}m$ in diameter with $100{\mu}m$ in depth and 26Jim in diameter with $50{\mu}m$ in depth are drilled on stainless steel 304. Also, micro grooves with $18{\mu}m$ width and complex micro hand pattern are machined by electrochemical milling.

Investigation of Polypyrrole Coatings Containing Nanosized Metal Oxides for Corrosion Protection of AA2024 Al Alloy

  • Fekri, F.;Shahidi, M.;Foroughi, M.M.;Kazemipour, M.
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.148-158
    • /
    • 2019
  • The corrosion protection of AA2024 PPy coated samples doping with nanosized metal oxides, including $TiO_2$ and $CeO_2$ nanoparticles and $Nd_2O_3$ nanorods, during exposure to the solutions of 0.1 M $H_2SO_4$ and 3.5% NaCl was evaluated by electrochemical impedance spectroscopy (EIS) and linear polarization resistance (LPR) techniques. The nanorods of $Nd_2O_3$ were synthesized by cathodic pulse electrochemical deposition technique. The barrier properties of the different PPy coatings containing nanosized metal oxides immersed in $H_2SO_4$ solution were ranked as follows: $Nd_2O_3$ > $TiO_2$ > $CeO_2$. Therefore, the $Nd_2O_3$ coating sample provided the highest corrosion protection at any time of immersion up to 72 hours after immersing in $H_2SO_4$ solution. On the other hand, the $CeO_2$ coating sample displayed the best anticorrosive properties among the other coating samples after immersion in NaCl solution up to 28 days. This is due to the inhibition effect of cerium ions on aluminum alloys at near-neutral solutions.

Laser Micro Machining and Electrochemical Etching After Surface Coating (미세 레이저 가공의 표면코팅 후 전해 에칭)

  • Kim, Tae Pung;Park, Min Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.638-643
    • /
    • 2013
  • Laser beam machining (LBM) is fast, contactless and able to machine various materials. So it is used to cut metal, drill holes, weld or pattern the imprinted surface. However, after LBM, there still leave burrs and recast layers around the machined area. In order to remove these unwanted parts, LBM process often uses electrochemical etching (ECE). But, the total thickness of workpiece is reduced because the etching process removes not only burrs and recast layers, but also the entire surface. In this paper, surface coating was performed using enamel after LBM on metal. The recast layer can be selectively removed without decreasing total thickness. Comparing with LBM process only, the surface quality of enamel coating process was better than that. And edge shape was also maintained after ECE.

Effect of Machining Conditions on machining gap in Micro Electrochemical Drilling (미세 전해 구멍 가공에서의 가긍 조건에 따른 가공 간극 변화 특성)

  • Kim, Bo-Hyun;Park, Byung-Jin;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.163-169
    • /
    • 2005
  • Micro hole is ode of basic elements for micro device or micro parts. Micro electrochemical machining (ECM) can be applied to the machining of micro holes less than 50 ${\mu}m$ in diameter, which it is not easy to apply other techniques to. For the machining of passivating metals such as stainless steel, machining conditions should be chosen carefully to prevent a passive layer. The machining conditions also affect the machining resolution, In this paper, machining characteristics of micro ECM were investigated according to machining conditions such as electrolyte concentration and pulse conditions. From the investigation, optimal machining conditions were suggested for micro ECM of stainless steel.

Machining Characteristics in Micro Electrochemical Drilling and Simulation (미세 전해 구멍 가공에서의 가공 특성과 시뮬레이션)

  • Kim B.H.;Lee Y.S.;Choi D.K.;Chu C.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1202-1205
    • /
    • 2005
  • Micro hole is one of basic elements for micro device or micro parts. By micro ECM, micro holes less than $50\mu{m}$ in diameter can be machined easily. Machining characteristics of micro ECM were investigated according to machining conditions such as electrolyte concentration and pulse conditions. From the investigation, optimal machining conditions were suggested for micro ECM of stainless steel. For the micro machining with high resolution, the change of machining gap should be predicted. By using electrochemical principle equations, the change of machining gap was simulated.

  • PDF

Indirect Electrochemical Oxidation of Phenol by Ce4+, Controlling Surface Insulation of Au Electrode

  • Pyo, Myoung-Ho;Moon, Il-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.6
    • /
    • pp.899-902
    • /
    • 2005
  • Indirect electrochemical oxidation of phenol by $Ce^{4+}$ was investigated in sulfuric acid solutions. It was found that electrode fouling during oxidation of phenol can be controlled by adjusting the time interval (TI) of double potential steps (DPSs). While the electroactivity was greatly decreased after several DPSs of a relatively long TI, repeated DPSs with a short potential pulse showed substantial amounts of electroactivity after a few hundreds or thousands DPS, suggesting that the formation of an insulating layer can be controlled by adjusting a potential program. Effectiveness of the consecutive application of DPSs for phenol decomposition was confirmed by GC-MS.

Tungsten Wire Micro Electrochemical Machining with Ultra Short Pulses (텅스텐 와이어 초단 펄스 미세 전해가공)

  • Shin, Hong-Shik;Kim, Bo-Hyun;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.6
    • /
    • pp.105-112
    • /
    • 2007
  • Tungsten wire micro electrochemical machining (W-wire micro ECM) with ultra-short pulses enables precise micro machining of metal. In wire micro ECM, platinum wire has been used because it is electrochemically stable. However, the micro metal wire with low strength is easily deformed by hydrogen bubbles which are generated during the machining. The wire deformation decreases the machining accuracy. To reduce the influence of hydrogen bubbles, in this paper, the use of tungsten wire was investigated. To improve machining accuracy, suitable pulse conditions which affect generation of bubbles were also investigated. The tungsten wire micro ECM can be applied to the fabrication of various shapes. Using this method, various micro-parts and shapes were fabricated.