Browse > Article
http://dx.doi.org/10.5229/JECST.2017.8.4.274

A Facile Electrochemical Fabrication of Reduced Graphene Oxide-Modified Glassy Carbon Electrode for Simultaneous Detection of Dopamine, Ascorbic Acid, and Uric Acid  

Yu, Joonhee (Department of Chemistry, Soonchunhyang University)
Kim, Tae Hyun (Department of Chemistry, Soonchunhyang University)
Publication Information
Journal of Electrochemical Science and Technology / v.8, no.4, 2017 , pp. 274-281 More about this Journal
Abstract
This paper describes the simple fabrication of an electrode modified with electrochemically reduced graphene oxide (ERGO) for the simultaneous electrocatalytic detection of dopamine (DA), ascorbic acid (AA), and uric acid (UA). ERGO was formed on a glassy carbon (GC) electrode by the reduction of graphene oxide (GO) using linear sweep voltammetry. The ERGO/GC electrode was formed by subjecting a GO solution ($1mg\;mL^{-1}$ in 0.25 M NaCl) to a linear scan from 0 V to -1.4 V at a scan rate of $20mVs^{-1}$. The ERGO/GC electrode was characterized by Raman spectroscopy, Fourier transform infrared spectroscopy, contact angle measurements, electrochemical impedance spectroscopy, and cyclic voltammetry. The electrochemical performance of the ERGO/GC electrode with respect to the detection of DA, AA, and UA in 0.1 M PBS (pH 7.4) was investigated by differential pulse voltammetry (DPV) and amperometry. The ERGO/GC electrode exhibited three well-separated voltammetric peaks and increased oxidation currents during the DPV measurements, thus allowing for the simultaneous and individual detection of DA, AA, and UA. The detection limits for DA, AA, and UA were found to be 0.46, 77, and $0.31{\mu}M$ respectively, using the amperometric i-t curve technique, with the S/N ratio being 3.
Keywords
Dopamine; Graphene; Reduced graphene oxide; Electrochemical sensor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. C. Berridge, T. E. Robinson, Brain Res. Rev. 1998, 28, 309-369.   DOI
2 P. Seeman, Pharmacol. Rev. 1980, 32(3), 229-313.
3 K. L. Davis, R. S. Kahn, others, Am. J. Psychiatry 1991, 148(11), 1474.   DOI
4 H. Bernheimer, W. Birkmayer, O. Hornykiewicz, K. Jellinger, F. Seitelberger, J. Neurol. Sci. 1973, 20(4), 415-455.   DOI
5 B. J. Venton, R. M. Wightman, Anal. Chem. 2003, 75, 414 A-421 A.
6 C. D. Blaha, A. G. Phillips, J. Neurosci. Methods 1990, 34(1), 125-133.   DOI
7 F. Gonon, M. Buda, R. Cespuglio, M. Jouvet, J.-F. Pujol, Nature 1980, 286(5776), 902-904.   DOI
8 R. D. O'Neill, Analyst 1994, 119(5), 767-779.   DOI
9 M. Sajid, M. K. Nazal, M. Mansha, A. Alsharaa, S. M. S. Jillani, C. Basheer, TrAC Trends Anal. Chem. 2016, 76, 15-29.   DOI
10 J.-W. Oh, Y. W. Yoon, J. Heo, J. Yu, H. Kim, T. H. Kim, Talanta 2016, 147, 453-459.   DOI
11 A. Pandikumar, G. T. S. How, T. Peik See, F. Saiha Omar, S. Jayabal, K. Zangeneh Kamali, N. Yusoff, A. Jamil, R. Ramaraj, S. Abraham John, et al., RSC Adv. 2014, 4(108), 63296-63323.   DOI
12 Z.-H. Sheng, X.-Q. Zheng, J.-Y. Xu, W.-J. Bao, F.-B. Wang, X.-H. Xia, Biosens. Bioelectron. 2012, 34(1), 125-131.   DOI
13 M. Pumera, A. Ambrosi, A. Bonanni, E. L. K. Chng, H. L. Poh, TrAC Trends Anal. Chem. 2010, 29(9), 954-965.   DOI
14 M. M. I. Khan, A.-M. J. Haque, K. Kim, J. Electroanal. Chem. 2013, 700, 54-59.   DOI
15 S. Qi, B. Zhao, H. Tang, X. Jiang, Electrochimica Acta 2015, 161, 395-402.   DOI
16 M. Zhou, Y. Zhai, S. Dong, Anal. Chem. 2009, 81(14), 5603-5613.   DOI
17 V. Mani, A. P. Periasamy, S.-M. Chen, Electrochem. Commun. 2012, 17, 75-78.   DOI
18 S. Pei, H.-M. Cheng, Carbon 2012, 50(9), 3210-3228.   DOI
19 D. Chen, H. Feng, J. Li, Chem. Rev. 2012, 112(11), 6027-6053.   DOI
20 L. Yang, D. Liu, J. Huang, T. You, Sens. Actuators B Chem. 2014, 193, 166-172.   DOI