• Title/Summary/Keyword: Pulsatile flow

Search Result 160, Processing Time 0.031 seconds

Effects of Frequency Characteristics of High Frequency-Hydraulic System for the Changes of Accumulators (축압기의 변화가 고주파 유압시스템의 주파수 특성에 미치는 영향)

  • Roh, Hyung-Woon;Kim, Jae-Soo;Park, Nam-Eun;Kim, Yang-Soo;Jeon, Seung-Bae;Na, Hong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1936-1941
    • /
    • 2003
  • Characteristics of the high frequency and pulsatile flow investigated experimentally to understand the flow phenomena in the hydraulic system. In the study, I axis fatigue tester which are widely used for automobile filed are selected. 4 Pressure transducer, amplifier, A/D convertor are used to analyse and to obtain the pulsatle pressure waveform with high frequencies in hydraulic system. Matlab are used. to analyse the characteristics of frequency. Variation of pump input pressure and actuator acceleration frequency, pressure wave are measured with or without accumulators. For with accumulator, frequency amplitude of pressure are very lower than those of without accumulator due to absorbing function of accumulator. As the actuator acceleration frequency increased, effect of accumulator are very important to decrease the pulsatile pressure waveform with high frequencies.

  • PDF

Comparison of Pulsatile and Non-Pulsatile Extracorporeal Circulation on the Pattern of Coronary Artery Blood Flow (체외순환에서 박동 혈류와 비박동 혈류가 관상동맥 혈류양상에 미치는 영향에 대한 비교)

  • Son Ho Sung;Fang Yong Hu;Hwang Znuke;Min Byoung Ju;Cho Jong Ho;Park Sung Min;Lee Sung Ho;Kim Kwang Taik;Sun Kyung
    • Journal of Chest Surgery
    • /
    • v.38 no.2 s.247
    • /
    • pp.101-109
    • /
    • 2005
  • Background: In sudden cardiac arrest, the effective maintenance of coronary artery blood flow is of paramount importance for myocardial preservation as well as cardiac recovery and patient survival. The purpose of this study was to directly compare the effects of pulsatile and non-pulsatile circulation to coronary artery flow and myocardial preservation in cardiac arrest condition. Material and Method: A cardiopulmonary bypass circuit was constructed in a ventricular fibrillation model using fourteen Yorkshire swine weighing $25\~35$ kg each. The animals were randomly assigned to group I (n=7, non-pulsatile centrifugal pump) or group II (n=7, pulsatile T-PLS pump). Extra-corporeal circulation was maintained for two hours at a pump flow of 2 L/min. The left anterior descending coronary artery flow was measured with an ultrasonic coronary artery flow measurement system at baseline (before bypass) and at every 20 minutes after bypass. Serologic parameters were collected simultaneously at baseline, 1 hour, and 2 hours after bypass in the coronary sinus venous blood. The Mann-Whitney U test of STATISTICA 6.0 was used to determine intergroup significances using a p value of < 0.05. Result: The resistance index of the coronary artery was lower in group II and the difference was significant at 40 min, 80 min, 100 min and 120 min (p < 0.05). The mean velocity of the coronary artery was higher in group II throughout the study, and the difference was significant from 20 min after starting the pump (p < 0.05). The coronary artery blood flow was higher in group II throughout the study, and the difference was significant from 40 min to 120 min (p < 0.05) except at 80 min. Serologic parameters showed no differences between the groups at 1 hour and 2 hours after bypass in the coronary sinus blood. Conclusion: In cardiac arrest condition, pulsatile extracorporeal circulation provides more blood flow, higher flow velocity and less resistance to coronary artery than non-pulsatile circulation.

Hemodynamic Modeling of the Pulsatile Cardiac Pulmonary Perfusion for the Patient's Heart (환자의 박동형 심장의 폐순환 혈류 모델링에 대한 연구)

  • Kim, J.S.;Kim, M.S.;Choi, S.W.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1679-1682
    • /
    • 2008
  • Pulsatile Extracorporeal Membrane Oxygenation(ECMO) can mitigate the heart load and raise the patient's blood perfusion. But If the ECMO pulsate the blood flow during the systolic period, It can burden to the patient's heart. To avoid the heart injury, we have to consider the relation between output of ECMO, hemodynamic states and heart movement. To raise the efficacy of the pulsatile ECMO, we investigated the coronary perfusion, cardiac muscle tension and hemodynamic states during the ECMO perfusion by using the mathematical model of human blood circulatory system and ECMO. The outflow data of the pulsatile ECMO(T-PLS, Bioheartkorea, Korea) was obtained in vitro experiments. According to the phase and pumping rate of the ECMO, the heart's load and coronary perfusion could be adjusted to the proper levels. The results of the human- ECMO lumped parameter model showed that the synchronizing operation of the pulsatile ECLS can be helpful at stabilizing the patient's hemodynamic states.

  • PDF

Non-Invasive Measurement of Shear Rates of Pulsating Pipe Flow Using Echo PIV (에코 PIV를 이용한 맥동 유동에서의 in vitro 전단률 측정 연구)

  • Kim, Hyoung-Bum;Chung, In-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1567-1572
    • /
    • 2004
  • Although accurate measurement of velocity profiles, multiple velocity vectors, and shear stress in arteries is important, there is still no easy method to obtain such information in vivo. This study shows the utility of combining ultrasound contrast imaging with particle image velocimetry (PIV) for non-invasive measurement of velocity vectors. The steady flow analytical solution and optical PIV measurements (for pulsatile flow) were used for comparison. When compared to the analytical solution, both echo PIV and optical PIV resolved the steady velocity profile well. Error in shear rate as measured by echo PIV (8%) was comparable to the error of optical PIV (6.5%). In pulsatile flow, echo PIV velocity profiles agreed well with optical PIV profiles. Echo PIV followed the general profile of pulsatile shear stress across the artery but underestimated wall shear at certain time points. These studies indicate that echo PIV is a promising technique for the non-invasive measurement of velocity profiles and shear stress.

Application of the Pulsatile Cardiopulmonary Bypass in Animal Model (이중 박동성 인공심폐기의 동물 실험)

  • Shin, Hwa-Kyun;Won, Yong-Soon;Lee, Jea-Yook;Her, Keun;Yeum, Yook;Kim, Seung-Chul;Min, Byoung-Goo
    • Journal of Chest Surgery
    • /
    • v.37 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • Background: Currently, the cardiopulmonary machine with non-pulsatile pumps, which are low in internal circuit pressure and cause little damage to blood cells, is widely used. However, a great number of experimental studies shows that pulsatile perfusions are more useful than non-pulsatile counterparts in many areas, such as homodynamic, metabolism, organ functions, and micro-circulation. Yet, many concerns relating to pulsatile cardiopulmonary machines, such as high internal circuit pressure and blood cell damage, have long hindered the development of pulsatile cardiopulmonary machines. Against this backdrop, this study focuses on the safety and effectiveness of the pulsatile cardiopulmonary machines developed by a domestic research lab. Material and Method: The dual-pulsatile cardiopulmonary bypass experiment with total extracorporeal circulation was conducted on six calves, Extracorporeal circulation was provided between superior/inferior vena cava and aorta. The membrane oxygenator, which was placed between the left and right pumps, was used for blood oxygenation. Circulation took four hours. Arterial blood gas analysis and blood tests were also conducted. Plasma hemoglobin levels were calculated, while pulse pressure and internal circuit pressure were carefully observed. Measurement was taken five times; once before the operation of the cardiopulmonary bypass, and after its operation it was taken every hour for four hours. Result: Through the arterial blood gas analysis, PCO2 and pH remained within normal levels. PO2 in arterial blood showed enough oxygenation of over 100 mmHg. The level of plasma hemoglobin, which had total cardiopulmonary circulation, steadily increased to 15.87 $\pm$ 5.63 after four hours passed, but remained below 20 mg/㎗. There was no obvious abnormal findings in blood test. Systolic blood pressure which was at 97.5$\pm$5.7 mmHg during the pre-circulation contraction period, was maintained over 100 mmHg as time passed. Moreover, diastolic blood pressure was 72.2 $\pm$ 7.7 mmHg during the expansion period and well kept at the appropriate level with time passing by. Average blood pressure which was 83$\pm$9.2 mmHg before circulation, increased as time passed, while pump flow was maintained over 3.3 L/min. Blood pressure fluctuation during total extracorporeal circulation showed a similar level of arterial blood pressure of pre-circulation heart. Conclusion: In the experiment mentioned above, pulsatile cardiopulmonary machines using the doual-pulsatile structure provided effective pulsatile blood flow with little damage in blood cells, showing excellence in the aspects of hematology and hemodynamic. Therefore, it is expected that the pulsatile cardiopulmonary machine, if it becomes a standard cardiopulmonary machine in all heart operations, will provide stable blood flow to end-organs.

Combined multi-predict-correct iterative method for interaction between pulsatile flow and large deformation structure

  • Wang, Wenquan;Zhang, Li-Xiang;Yan, Yan;Guo, Yakun
    • Coupled systems mechanics
    • /
    • v.1 no.4
    • /
    • pp.361-379
    • /
    • 2012
  • This paper presents a fully coupled three-dimensional solver for the analysis of interaction between pulsatile flow and large deformation structure. A partitioned time marching algorithm is employed for the solution of the time dependent coupled discretised problem, enabling the use of highly developed, robust and well-tested solvers for each field. Conservative transfer of information at the fluid-structure interface is combined with an effective multi-predict-correct iterative scheme to enable implicit coupling of the interacting fields at each time increment. The three-dimensional unsteady incompressible fluid is solved using a powerful implicit time stepping technique and an ALE formulation for moving boundaries with second-order time accurate is used. A full spectrum of total variational diminishing (TVD) schemes in unstructured grids is allowed implementation for the advection terms and finite element shape functions are used to evaluate the solution and its variation within mesh elements. A finite element dynamic analysis of the highly deformable structure is carried out with a numerical strategy combining the implicit Newmark time integration algorithm with a Newton-Raphson second-order optimisation method. The proposed model is used to predict the wave flow fields of a particular flow-induced vibrational phenomenon, and comparison of the numerical results with available experimental data validates the methodology and assesses its accuracy. Another test case about three-dimensional biomedical model with pulsatile inflow is presented to benchmark the algorithm and to demonstrate the potential applications of this method.

Numerical investigation on the blood flow characteristics considering the axial rotation in stenosed artery

  • Sung, Kun-Hyuk;Ro, Kyoung-Chul;Ryou, Hong-Sun
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.2
    • /
    • pp.119-126
    • /
    • 2009
  • A numerical analysis is performed to investigate the effect of rotation on the blood flow characteristics with four different angular velocities. The artery has a cylindrical shape with 50% stenosis rate symmetrically distributed at the middle. Blood flow is considered a non-Newtonian fluid. Using the Carreau model, we apply the pulsatile velocity profile at the inlet boundary. The period of the heart beat is one second. In comparison with no-rotation case, the flow recirculation zone (FRZ) contracts and its duration is reduced in axially rotating artery. Also wall shear stress is larger after the FRZ disappears. Although the geometry of artery is axisymmetry, the spiral wave and asymmetric flow occur clearly at the small rotation rate. It is caused that the flow is influenced by the effects of the rotation and the stenosis at same time.

Three-Dimensional Flow in an End-to-Side Vascular Anastomosis: Steady and Pulsatile Flow (End-to-Side 혈관문합에서의 삼차원유동: 정상유동 및 맥류유동)

  • Kim, Young-H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.05
    • /
    • pp.115-118
    • /
    • 1994
  • Three-dimensional steady and pulsatile flows in an end-to-side anastomosis were investigated using a finite difference method in order to understand the flow dynamics in the preferential development of distal anastomotic intimal hyperplasia or thrombosis. Steady flow results revealed that a double helical vortex was formed in the host artery and flow recirculations near tow and heel regions were limited due to the secondary flow. Oscillating wall shear stress with significant secondary flow might be the flow dynamic reason of developing intimal hyperplasia or thrombosis.

  • PDF

Effect of Pulsatile Versus Nonpulsatile Blood Flow on Renal Tissue Perfusion in Extracorporeal Circulation (체외순환에서 박동 혈류와 비박동 혈류가 신장의 조직관류에 미치는 영향)

  • Kim Hyun Koo;Son Ho Sung;Fang Yang Hu;Park Sung Young;Kim Kwang Taik;Kim Hark Jei;Sun Kyung
    • Journal of Chest Surgery
    • /
    • v.38 no.1 s.246
    • /
    • pp.13-22
    • /
    • 2005
  • It has been known that pulsatile flow is physiologic and more favorable to tissue perfusion than nonpulsatile flow. The purpose of this study is to directly compare the effect of pulsatile versus nonpulsatile blood flow to renal tissue perfusion in extracorporeal circulation by using a tissue perfusion measurement system. Material and Method: Total cardiopulmonary bypass circuit was constructed to twelve Yorkshire swines, weighing 20$\~ $30 kg. Animals were randomly assigned to group 1 (n=6, non pulsatile centrifugal pump) or group 2 (n=6, pulsatile T-PLS pump). A probe of the tissue perfusion measurement system $(QFlow^{TM}-500)$ was inserted into the renal pa­renchymal tissue. Extracorporeal circulation was maintained for an hour at a pump flow of 2 L/min after aortic cross-clamping. Tissue perfusion flow of the kidney was measured at baseline (before bypass) and every 10 minutes after bypass. Serologic parameters were collected at baseline and 60 minutes after bypass. Result: Baseline parameters were not different between the groups. Renal tissue perfusion flow was substantially higher in the pulsatile group throughout the bypass (ranged 48.5$\~$ 64 in group 1 vs. 65.8$\~$88.3 mL/min/100 g in group 2, p=0.026$\~$ 0.45) The difference was significant at 30 minutes bypass $(47.5{\pm}18.3\;in\;group\;1\;vs.\;83.4{\pm}28.5$ mL/min/100 g in group 2, p=0.026). Serologic parameters including plasma free hemoglobin, blood urea nitrogen, and creatinine showed no differences between the groups at 60 minutes after bypass (p=NS). Conclusion: Pulsatile flow is more beneficial to tissue perfusion of the kidney in short-term extracorporeal circulation. Further study is suggested to observe the effects to other vital organs or long-term significance.