본 논문에서는 voxel classification을 이용한 폐 결절 자동 검출 시스템을 제안한다. 제안하는 폐 영상 분석 방법은 크게 세 단계로 구성된다. 첫 번째 단계에서는 분석 대상 폐 영역을 분할한다. 그리고 두 번째 단계는 분할된 폐 영역 내에서 폐 구조물을 분할한다. 마지막으로 두 번째 과정에서 분할된 폐결절후보와 폐혈관 voxel을 대상으로 log-polar sampling을 이용한 특징 벡터를 만들고, 특징벡터를 입력 값으로 하여 support vector machine classifier를 이용하여 분석대상 voxel을 폐 결절 voxel과 비결절 voxel로 구분하여 폐 결절을 검출한다.
환자의 흉부 CT 영상을 입력으로 하여 폐 영역의 결절(nodule)을 효과적으로 분류하는 것이 목적인 컴퓨터 조력 진단(Computer Aided Diagnosis, CAD) 시스템에서는 대부분 폐 영역의 혈관 추출 단계가 우선적으로 진행된다. 혈관 조영제를 투여한 환자 영상에서 폐 혈관과 폐 결절은 흉부 CT 영상에서 비슷한 감쇄를 보이므로 혈관 추출 단계에서 혈관과 결절이 함께 추출될 수 있다. 때문에 폐 혈관이 제거된 나머지 영역에서 폐 결절을 탐지 및 분류하는 방식의 폐 결절 분류기는 혈관 추출 기법의 성능에 큰 영향을 받는다. 본 논문에서는 폐 결절이 혈관으로 오인식 되어 혈관과 함께 추출될 수 있는 문제를 극복하기 위해 혈관의 두께 패턴을 분석하여 폐 결절을 재분류하는 기법을 제안한다. 제안된 방법은 폐 영역 결정 단계, 폐 혈관 영역 추출 및 골격 형성 단계, 혈관 토폴로지 구성 및 보정 단계, 그리고 혈관 후보 내 결절 재분류 단계 등의 네 단계로 이루어져 있다. 제안한 방법의 정확도를 분석하기 위해 폐 결절이 혈관을 침투하여 분포하는 환자들의 입력 영상을 이용하여 판독 전문의의 도움을 받아 분류기의 정확도 평가를 진행하였다. 실험 결과에서는 제안한 혈관 추출 및 결절 재분류 기법을 사용한 CAD 시스템의 폐 결절 분류기 성능과 재분류 절차를 진행하지 않은 분류기 성능에 대해 비교하고 제안한 방법이 혈관 영역으로 잘못 포함된 결절을 자동으로 정확하게 재분류 할 수 있음을 보여준다.
Ground-glass opacity nodules(GGNs) in chest CT images are associated with lung cancer, and have a different malignant rate depending on existence of solid component in the nodules. In this paper, we propose a method to classify pure GGNs and part-solid GGNs using multiview images and texture analysis in pulmonary GGNs with solid components of 5mm or smaller. We extracted 1521 features from the GGNs segmented from the chest CT images and classified the GGNs using a SVM classification model with selected features that classify pure GGNs and part-solid GGNs through a feature selection method. Our method showed 85% accuracy using the SVM classifier with the top 10 features selected in the multiview images.
Early detection of the pulmonary nodule is important for diagnosis and treatment of lung cancer. Recently, CT has been used as a screening tool for lung nodule detection. And, it has been reported that computer aided detection(CAD) systems can improve the accuracy of the radiologist in detection nodules on CT scan. The previous study has been proposed a method using Convolutional Neural Network(CNN) in Lung CAD system. But the proposed model has a limitation in accuracy due to its sparse layer structure. Therefore, we propose a Deep Convolutional Neural Network to overcome this limitation. The model proposed in this work is consist of 14 layers including 8 convolutional layers and 4 fully connected layers. The CNN model is trained and tested with 61,404 regions-of-interest (ROIs) patches of lung image including 39,760 nodules and 21,644 non-nodules extracted from the Lung Image Database Consortium(LIDC) dataset. We could obtain the classification accuracy of 91.79% with the CNN model presented in this work. To prevent overfitting, we trained the model with Augmented Dataset and regularization term in the cost function. With L1, L2 regularization at Training process, we obtained 92.39%, 92.52% of accuracy respectively. And we obtained 93.52% with data augmentation. In conclusion, we could obtain the accuracy of 93.75% with L2 Regularization and Data Augmentation.
Background: Primary non-Hodgkin's lymphoma of the lung is a rare entity. It is represented commonly as marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue (MALT) type. Although there have been a few reviews of this lymphoma, clinical features, radiologic findings, management and prognosis have not been well defined. Methods: We reviewed the medical records of 24 patients with primary pulmonary lymphoma between January 1995 and September 2008; all diagnoses had been confirmed based on pathology. Results: The median follow-up time was 42.3 months (range, 0.1~131.2 months). Five (20.8%) patients were asymptomatic, 17 (70.8%) patients had pulmonary symptoms, and the remaining 2 (8.3%) patients presented with constitutional symptoms. There were 16 (66.7%) patients with MALT lymphoma, 4 (16.7%) patients with diffuse large B-cell lymphoma and 4 (16.7%) patients with lymphoma that had not received a WHO classification. Radiologic findings of primary pulmonary lymphoma were diverse and multiple nodule or consolidation was the most common finding regardless of pathologic lymphoma type. PET scan was carried out in 13 (54.2%) patients and all lesions showed notable FDG uptake. MALT lymphoma showed a trend of better prognosis (3-year survival, 78.8% vs. 70.0%; 5-year survival, 78.8% vs. 52.5%; p=0.310) than non-MALT lymphoma. Conclusion: Primary non-Hodgkin's lymphoma of the lung occurs with nonspecific clinical features and radiologic findings. MALT lymphoma is the most common pathologic type of primary pulmonary lymphoma. This entity of lymphoma appears to have a good prognosis and in this study, there was a trend of better outcome than non-MALT lymphoma.
본 논문에는 관심 영역의 폐실질 영역을 양성과 악성 결절의 분류를 위한 특징인자에 포함으로써 분류성능을 개선하였다. CT를 통해 확인되는 매우 작은 폐결절(4~10mm)은 고형 종양 내에 CT 데이터 복셀 수가 제한되어 기존 컴퓨터보조 진단도구를 통해 처리하기가 어렵다. 이러한 아주 작은 폐 결절의 경우 분석을 위해 주변의 실질을 포함하여 특징인자를 추출하는 것이 CT 복셀 세트를 증가시킬 수 있으며, CT 스캐너와 매개 변수에 대한 컴퓨터 보조진단도구의 유연성을 확보함으로써 진단 성능을 개선할 수 있다. 나이브 베이스와 SVM 약분류기를 이용하는 아다부스트 학습을 통해 304개의 특징인자로부터 유효한 특징인자를 결정하였으며, 제안한 방법을 COPDGene 데이터에 적용한 결과 100%의 정확도, 민감도 및 특이도의 결과를 획득하여 컴퓨터 보조진단에 유용하게 사용될 수 있음을 보였다.
Early recognition of coalescence in pneumoconiotic lesions is important because such coalescence is associated with the respiratory symptoms and deterioration of lung function. This complicated form of pneumoconiosis also has worse prognosis than does simple pneumoconiosis. High resolution computerized tomography(HRCT) provides significant additional information on the stage of the pneumoconiosis because it easily detects coalescence of nodules and emphysema that may not be apparent on the simple radiograph. The purpose of this study is to clarify the role of HRCT in detection of large opacity and the relationship of change between the coalescence of nodules or emphysema and lung function in dust exposed workers. 1. There was good correlation between the HRCT grade of pneumoconiosis and ILO category of profusion. 5(9.09%) in 55 study population had confluent nodule extending eve, two o, more cuts on HRCT. HRCT could identify the pneumoconiotic nodules which was not found by simple radiogrphy in 6 workers with category 0/0. 2. No significant difference was observed coalescence of nodules and emphysema by dust type. 3. There was no significant difference in pulmonary function according to ILO and HRCT classification. 4. HRCT could detect the significant reduction in $FEV_1,\;FEV_1/FVC$, PEFR, $FEF_{25},\;FEF_{50},\;and\;FEF_{75}$ and remarkable increase in RV and TLC in study persons with emphysema compared with non-emphysema group. 5. Emphysema was found more often in nodules-coalescence group than small opacity group by HRCT. We found that HRCT could easily detect areas of coalescence and complicated emphysema compared to plain chest X-ray. Also our data suggest that it is primarily the degree of emphysema rather than the degree of pneumoconiosis that determines the level of pulmonary function.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.