• Title/Summary/Keyword: Pullout resistance

Search Result 124, Processing Time 0.025 seconds

Pullout Resistance of Geogrid Reinforced Soil according to Compaction Degree (흙의 다짐도에 따른 인발저항특성 연구)

  • 주재우;김병욱;박종범
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.11-20
    • /
    • 1999
  • The method which makes the soft ground reinforced by using the geogrid, a kind of geosynthetics has been getting popular and its usefulness also has been increased due to reduction in costs, ease of construction and great exterior view, But the study on the frictional characteristics, which is the important factor in design, between reinforcement and soil is insufficient. In this study, compaction degrees were considered through large-scale pullout tests. As a part of studying on estimation of pullout frictional characteristics between soil and geosynthetics, pullout tests were peformed and from the result of pullout tests, pullout frictional parameters between soil and geosynthetics were obtained and pullout behaviors were learned.

  • PDF

Pullout Test of Headed Reinforcement (Headed Reinforcement 인발실험)

  • 박명기;신인용;최동욱
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.203-208
    • /
    • 2001
  • Objectives of this study included design of head and evaluation of the pullout performance of the headed reinforcement that can be used to replace standard hooks in the building exterior beam-column joints. Results of 36 pullout tests are presented. Test variables included reinforcing bar diameters (16-25mm), embedment depth (6-7db), transverse reinforcement, and single-vs.-group pullout behavior. The square head designed had gross area of 4Ab and thickness of db. The headed reinforcement made of Dl6 bars developed pullout strengths close to the bar yield strength, but larger bars developed strengths smaller than the yield strengths. The pullout resistance increased with decreasing spacing of the transverse reinforcement. Use of column ties with 6.0-db spacing improved the pullout performance of the headed bars without causing difficulties in fabricating the specimens. The comparison of the pullout performances between the headed bars and the standard hooks revealed that strengths, stiffnesses, and ductile behaviors are about the same.

  • PDF

Characteristics Study by Pullout Test of Compression(JR-2000) Anchor (선단압축형(JR-2000) 앵커의 인발시험에 관한 특성연구)

  • Oh, Myung-Ju;Park, Tae-Young;Ha, Wook-Jai;Kim, Moon-Gyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.819-824
    • /
    • 2005
  • Anchor system is widely used in construction works to support retaining structures. The compression anchor is characterized by excellent mechanism of pullout resistance, as well as less probability of progressive failure than a tension anchor. This paper presents the mechanical characteristics of a newly developed compression anchor(JR-2000). Field tests were performed to investigate characteristics of the pullout resistance of compression anchor.

  • PDF

Pullout resistance of treadmats for reinforced soil structures

  • Kim, Keun-Soo;Yoon, Yeo-Won;Song, Ki-Il
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.83-90
    • /
    • 2018
  • A series of pullout tests were carried out on waste tire treadmats of various weave arrangements, with confining stresses ranging from 9 to 59 kPa approximately, in order to investigate the pullout behavior and to apply the results to the design of treadmat reinforced soil structures. A treadmat reinforcement can be considered as belonging to the extensible type thus progressive failure would develop in every tread. The pullout capacity of a treadmat was found to be generally equal to the sum of capacities of the longitudinal treads, with minor enhancement realized due to the presence of transverse treads. Pullout failures occurred in treadmats under light surcharge and with treadmats with higher material presence per unit area, while breakage failures occurred in treadmats under heavier surcharge and with treadmats with higher ratio of opening. The pullout capacity of a treadmat increased with increasing surcharge height and treadmat stiffness. A pullout test on a commercially available geogrid was also carried out for comparison and the pullout capacity of a treadmat was found higher than that of the comparable geogrid under identical loading conditions, indicating the merit of using the treadmat as an alternative to the chosen geogrid.

Evaluation on Applicability of Finite Element Analysis in Model Test of Pile Pullout (말뚝 인발모형실험에 대한 유한요소해석의 적용성 평가)

  • You, Seung-Kyong;Shin, Heesoo;Lee, Kwang-Wu;Park, Jeong-Jun;Choi, Choong-Lak;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.2
    • /
    • pp.11-21
    • /
    • 2019
  • This paper describes the applicability of FEA(Finite Element Analysis) to the simulation of pile pullout behavior under various soil conditions (relative density and fines content), in order to evaluate reasonably the pullout resistance of pile. That is, the results of previous research (You et al., 2018) were analyzed by FEA under the same conditions. The FEA results showed that axisymmetric analysis using virtual ground was able to evaluate the skin friction of the pile. Also, axisymmetric analysis, which can apply the shear resistance characteristics of the pile-soil interface in various soil conditions, could be used as an analytical method that can simulate a reasonable pile pullout behavior. Therefore, the analytical model proposed in this study was able to simulate appropriately the pullout behavior based on the stress-strain relationship of the pile-soil interface.

Pullout Characteristics of End Fixed Nails (양단정착형 쏘일네일링의 인발특성)

  • Lee, Bongjik;Kim, Josoon;Lee, Jongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.4
    • /
    • pp.5-11
    • /
    • 2007
  • In this study, several pullout tests were carried out under various field conditions to evaluate the pullout force of the end fixed nails. Pullout resistance force, displacement and friction force between the grouting and nail were measured in end fixed nails installed in soft rock, weathered rock and weathered soil. Furthermore, the field test were also carried out under the same condition using the conventional type nails. Based on the test results, it is concluded that the end fixed nails showed larger ultimate resistance force compared with conventional types nails, approximately two times in weathered soil and 1.6 times of weathered rock, respectively. The skin friction is also increased in end fixed type about 1.8~3.0 times. Finally, it is concluded in the base of the force transfer properties that using the end fixed nails could decrease the displacement and show a uniform resistance in entire length of nails.

  • PDF

Pullout Resistance of Pressurized Soil-Nailing by Cavity Expansion Theory (공팽창이론에 의한 압력식 쏘일네일링의 인발저항력 산정)

  • Seo, Hyung-Joon;Park, Sung-Won;Jeong, Kyeong-Han;Choi, Hang-Seok;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.7
    • /
    • pp.35-46
    • /
    • 2009
  • Pressure grouting is a common technique in geotechnical engineering to increase the stiffness and strength of the ground mass and to fill boreholes or void space in a tunnel lining and so on. Recently, the pressure grouting has been applied to a soil-nailing system which is widely used to improve slope stability. The soil-nailing design has been empirically performed in most geotechnical applications because the interaction between pressurized grouting paste and the adjacent ground mass is complicated and difficult to analyze. The purpose of this study is to analyze the increase of pullout resistance induced by pressurized grouting with the aid of performing laboratory model tests and field tests. In this paper, two main causes of pullout resistance increases induced by pressurized grouting were verified: the increase of mean normal stress and the increase of coefficient of pullout friction. From laboratory tests, it was found that dilatancy angle could be estimated by modified cavity expansion theory using the measured wall displacements. The radial displacement increases with dilatancy angle decrease and the dilatancy angle increases with injection pressure increase. The measured pullout resistance obtained from field tests is in good agreement with the estimated one from the modified cavity expansion theory.

Shear Resisting Effects of Protruded Nails by Pressure Grouting (가압식 돌기네일의 전단저항 효과)

  • Hong, Cheorhwa;Lee, Sangduk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.7
    • /
    • pp.13-20
    • /
    • 2017
  • Soil nailing is ground reinforcement method using the shear strength of ground and the pullout shear resistance force of nail. It is mainly used for reinforcement of cut slopes, earth retaining structures and retaining walls, etc. It may be designed considering the pullout resistance of nail in the case of earth retaining structure and retaining wall, but it should be designed considering not only pullout resistance but also shear and bending resistance in the case of slope. However, conservative designs considering only pullout resistance are being done and most of the studies are about increasing pullout resistance by improving of material, shape and construction method of nail. Actually, Shear bending deformations occur centering on the active surface in ground reinforced with the nail. The grout with relatively low strength is destroyed and separated from the reinforcing material. As a result, the ground is collapsed while reducing the frictional resistance rapidly. Therefore, it is necessary to develop the method to increase the shear resistance while preventing separation of nail and grout body. In this study, an experimental study was conducted on new soil nailing method which can increase shear resistance by forming protrusions through pressurized grouting after installing a packer on the outside of deformed bar.

Characteristics of Pullout Behavior of Soil Improvement(SI) Anchor (지반개량(SI)앵커의 인발거동특성)

  • 임종철;홍석우;송무효;강낙안
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.139-151
    • /
    • 1998
  • SI anchor means the soil improvement anchor. The ground for supporting anchor is improved by JSP, and as a result, SI anchor body has about 80cm in diameter. SI anchor shows high pullout resistance by the frictional force between anchor body and ground, and the bearing capacity of anchor body. Especially the frictional force increases very much with increasing diameter of anchor body improved by JBP. In this study, model and field tests are made to analyse the mechanism of pullout resistance of SI anchor. Through model tests for the SI anchor in air dried sandy ground, strain fields of ground around SI anchor surface are analysed by a photo analysis method using the latex membrane on the wall of soil tank. The results of field tests are analysed by the strains measured by 10 strain gages attached on the inner wall of specially designed PVC pipe embedded in anchor body, and the strains of anchor body are also measured in the model tests.

  • PDF

An Evaluation of In-situ the Pullout Resistance of Chain Reinforcement (체인 보강재의 현장 인발저항력 평가)

  • Kim, Sang-Su;Yu, Chan;Lee, Bong-Jik;Shin, Bang-Woong
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.339-347
    • /
    • 2002
  • An in-situ experiment was performed to evaluate the pullout resistance capacity of chains which is used as a reinforcement of reinforced earth wall. It was also considered that chain was combined with a bar or L-type steel angle by the transverse reinforcement member in the experiment. About 80 pullout tests were peformed with varying the lengths of chain(2.0m, 2.5m, and 3.0m), the combination of each transverse members(chain only, chain+bar, or chain+angle), and the vertical placement of reinforcements. In the case that uses a chain only and a chain combined with bar, the maximum displacement was about 150mm and load continuously increased to the ultimate tensile strength of chain, and then tension failure of chains occurred. But in the case of a chain combined with angle, the displacement decreased to about 100mm and so it was expected that this combination can constrain the displacement of chain. On the other hand, comparing the yielding pullout load measured in the field to that calculated by theoretical equation, it is shown that measured values are 1.2~3.0 times greater than those of calculated values according to the length of chain, normal vertical stress, and the combination of chain with transverse members. However, the difference in the increment of yielding pullout load between bar and angle is not clear but it appears almost the same increment. It is expected that chain can be safely used as reinforcements of reinforced earth wall, although a theoretical estimation of the pullout resistance capability of chain is too conservative.