• Title/Summary/Keyword: Puff model

Search Result 32, Processing Time 0.023 seconds

Pollutant Dispersion Analysis Using the Gaussian Puff Model with the Numerical Flowfield Information (유동장 수치해석이 포함된 퍼프모델을 이용한 오염물질의 확산 해석)

  • Jung Y. R.;Park W. G.;Park O. H.
    • Journal of computational fluids engineering
    • /
    • v.4 no.3
    • /
    • pp.12-20
    • /
    • 1999
  • The computations of the flowfield and pollutant dispersion over a flat plate and the Russian hills of various slopes are described. The Gaussian plume and the puff model have been used to calculate concentration of pollutant. The Reynolds-averaged unsteady incompressible Navier-Stokes equation with low Reynolds κ-ε model has been used to calculate the flowfield. The flow data of a flat plate and the Russian hills from Navier-Stokes equation solutions has been used as the input data for the puff model. The computational results of flowfield agree well with experimental results of both a flat plate and Russian hills. The concentration prediction by the Gaussian plume model and the Gaussian puff model also agrees flirty well with experiments.

  • PDF

Evaluation of INPUFF Model Using METREX Tracer Diffusion Experiment Data (METREX 확산실험 자료를 이용한 INPUFF모델의 평가)

  • 이종범;송은영;황윤성
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.6
    • /
    • pp.437-452
    • /
    • 2002
  • The Metropolitan Tracer Experiment (METREX) was performed over the Washington, D.C. area using two inert, non-deposition perfluorocarbon gases for over 1 year period (November 1983∼December 1984). Two perfluorocarbon gas tracers (PDCH, PMCH) were released simultaneously at intervals of every 36 hours for 6 hours, regardless of the meteorological conditions in metropolitan area. Samples were collected continuously for 8 hours at a central downtown and two adjacent suburban locations. Monthly air samples were collected at 93 sites across the whole region (at urban, suburban, and rural locations). The purpose of this study is to simulate INPUFF and ISCST model using METREX data, and to compare calculated and observed concentrations. In the case of INPUFF simulation, two meteorological input data were used. One is result data from wind field model which was calculated by diagnostic wind model (DWM), the other is meteorological data observed at single station. Here, three kinds of model calculation were performed during April and July 1984; they include (1) INPUFF model using DWM data (2) INPUFF model using single meteorological data (3) ISCST model. The monthly average concentration data were used for statistic analysis and to draw their horizontal distribution patterns. Eight-hour-averaged concentration was used to describe movement of puff during the episode period. The results showed that the concentrations calculated by puff model (INPUFF) were better than plume model (ISCST). In the case of puff model (INPUFF), a model run using wind field data produced better results than that derived by single meteorological data.

A Study on Transport and Dispersion of Chemical Agent According to Lagrangian Puff and Particle Models in NBC_RAMS (화생방 보고관리 및 모델링 S/W 시스템(NBC_RAMS)의 라그랑지안 퍼프 및 입자 모델에 따른 화학작용제 이송·확산 분석)

  • Hyeyun Ku;Jiyun Seo;Hyunwoo Nam
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.102-112
    • /
    • 2023
  • This research mainly focuses on the transport and dispersion of chemical agent plume according to the Lagrangian Puff Model and Lagrangian Particle Model of NBC_RAMS(Nuclear, Biological, Chemical Reporting And Modeling S/W System). NBC_RAMS was developed with the purposes of estimating the fate of Chemical, Biological, and Radioactive(CBR) agent plumes and evaluating damages in the Republic of Korea. First, it calculates the local weather pattern, i.e. wind speed, wind direction, and temperature, by considering the effects of land uses and topography. The plume behaviors are calculated by adopting the Lagrangian Puff Model(LPFM) or Lagrangian Particle Model(LPTM). In this research, we assumed a virtual chemical agent exposure event in a stable atmospheric condition during the summer season. The plume behaviors were estimated by both LPFM and LPTM on the used area(urbanized and dry area) and the agricultural land. The higher heat flux in the used area led to stronger winds and further downward movement moving of the chemical agent than the farmland. The lateral dispersion of the chemical plume was emphasized in the Lagrangian Puff Model because it adopted Gaussian distribution.

Simulation of Mixing Behavior for Dredging Plume using Puff Model (퍼프모형을 이용한 준설플륨의 혼합거동 모의)

  • Kim, Young-Do;Park, Jae-Hyeon;Lee, Man-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.10
    • /
    • pp.891-896
    • /
    • 2009
  • The puff models have been developed to simulate the advection-diffusion processes of dredging suspended solids, either alone or in combination with Eulerian models. Computational efficiency and accuracy are of prime importance in designing these hybrid approaches to simulate a pollutant discharge, and we characterize two relatively simple Lagrangian techniques in this regard: forward Gaussian puff tracking (FGPT), and backward Gaussian puff tracking (BGPT). FGPT and BGPT offer dramatic savings in computational expense, but their applicability is limited by accuracy concerns in the presence of spatially variable flow or diffusivity fields or complex no-flux or open boundary conditions. For long simulations, particle and/or puff methods can transition to an Eulerian model if appropriate, since the relative computational expense of Lagrangian methods increases with time for continuous sources. Although we focus on simple Lagrangian models that are not suitable to all environmental applications, many of the implementation and computational efficiency concerns outlined herein would also be relevant to using higher order particle and puff methods to extend the near field.

RADAP-A PC Program for Real-Time Prediction of Doses Following a Nuclear Accident (RADAP-원자력 사고후 실시간 선량 예측용 PC 전산프로그램)

  • Park, Jae-Won;Kang, Chang-Sun
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.102-109
    • /
    • 1993
  • A PC-computer program RADAP has been developed in this study to perform a quick real-time analysis of dose assessment following an accident in a nuclear facility. RADAP uses an interactive LKagrangian puff model in simulating the transport and diffusion of radioactive plume in the atmosphere. For real-time analysis, RADAP treats one or multiple puffs of ground-level releases, simultaneously. It is assumed to maintain a Gaussian distribution within the puff and the diffusion coefficients are computed using the USNRC's normal sigma curve method. The program, however, does not consider the spatial variations but the temporal variations in wind conditions. Whole body and thyroid doses for 3$\times$31 grid are directed to output files, and they are also displayed through computer graphics on VGA or EGA color monitor. The results show that RADAP can be an excellent tool for quick estimation of accidental doses.

  • PDF

Evaluation of Gaussian Puff Model with Tracer Experiment under Nighttime Strong Stable Conditions (추적자 확산실험에 의한 야간 강안정층하에서의 가우시안 퍼프모델의 평가)

  • Lee, Chong-Bum;Kim, San;Kim, Young-Goog;Cho, Chang-Rae;Yu, Seung-Do
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.5
    • /
    • pp.529-540
    • /
    • 1996
  • Dispersion experiment using SF$_{6}$ tracer was performed in the flat field of Chunchon Basin during four nights from August 29 to September 2, 1991. The purpose of this study is to analyze toe horizontal distribution of tracer concentration under the strong stable conditions and to evaluate the results calculated by INPUFF model. Incase of high wind speed, plume spread of SF$_{6}$ concentration appeared in narrow area of the downwind and the standard deviation of the horizontal wind angle (.sigma.$_{a}$) was amall. However, the SF$_{6}$ was spread widely in cases of low wind speed because of the large .sigma.$_{a}$. The result of the INPUFF model was similar to the observed distribution of the SF$_{6}$ concentration. It is proved that the Gaussian puff model is useful when wind direction varies significantly.tly.tly.tly.

  • PDF

Comparison of CALPUFF and HYSPLIT Models for Atmospheric Dispersion Simulations of Radioactive Materials (CALPUFF와 HYSPLIT의 방사성물질 대기확산 특성 비교)

  • An, Hye Yeon;Kang, Yoon-Hee;Song, Sang-Keun;Kim, Yoo-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.6
    • /
    • pp.573-584
    • /
    • 2015
  • In this study, the atmospheric dispersion of radioactive material ($^{137}Cs$) was simulated with regard to its impact within a 50-km radius from the Kori Nuclear Power Plant (NKPP) based on two different types of models (the non-steady-state puff model CALPUFF and the lagrangian model HYSPLIT) during the spring of 2012 (May 2012). The dispersion distribution of $^{137}Cs$ calculated in the CALPUFF model was similar to that of the HYSPLIT model, but the magnitudes of differences in its spatio-temporal concentrations between the two models were different. The $^{137}Cs$ concentrations simulated by the CALPUFF were significantly lower than those of the HYSPLIT due to a limitation of puff models (e.g. puff size growth over time). The CALPUFF had the advantage of determining the dispersion of radioactive materials and their impacts on the surrounding regions, compared with the HYSPLIT that had high concentrations of $^{137}Cs$ in only small local areas with the movement of air masses along the local winds.

The Real -Time Dispersion Modeling System

  • Koo, Youn-Seo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E4
    • /
    • pp.215-221
    • /
    • 2002
  • The real-time modeling system, named AirWatch System, has been developed to evaluate the environmental impact from a large source. It consists of stack TMS (TeleMetering System) that measures the emission data from the source, AWS (Automatic Weather Station) that monitors the weather data and computer system with the dispersion modeling software. The modeling theories used in the system are Gaussian plume and puff models. The Gaussian plume model is used for the dispersion in the simple terrain with a point meteorological data while the puff model is for the dispersion in complex terrain with three dimensional wind fields. The AirWatch System predicts the impact of the emitted pollutants from the large source on the near-by environment on the real -time base and the alarm is issued to control the emission rate if the calculated concentrations exceed the modeling significance level.

The Intracisternal Administration of MEK Inhibitor Attenuates Mechanical and Cold Allodynia in a Rat Model of Compression of the Trigeminal Ganglion

  • Lee, Min-K.;Yoon, Jeong-H.;Park, Min-K.;Yang, Gwi-Y.;Won, Kyung-A.;Park, Yoon-Yub;Ahn, Dong-K.
    • International Journal of Oral Biology
    • /
    • v.35 no.3
    • /
    • pp.75-81
    • /
    • 2010
  • The present study investigated the role of ERK in the onset of mechanical and cold allodynia in a rat model of compression of the trigeminal ganglion by examining changes in the air-puff thresholds and number of scratches following the intracisternal injection of PD98059, a MEK inhibitor. Male Sprague Dawley rats weighing between 250 and 260 g were used. Under anesthesia, the rats were mounted onto a stereotaxic frame and received 4% agar ($10\;{\mu}l$) solution to compress the trigeminal ganglion. In the control group, the animals were given a sham operation without the application of agar. Changes in behavior were examined at 3 days before and at 3, 7, 10, 14, 17, 21, 24, 30, and 40 days after surgery. Compression of the trigeminal ganglion significantly decreased the air-puff thresholds. Mechanical allodynia was established within 3 days and persisted over postoperative day 24. To evaluate cold allodynia, nociceptive scratching behavior was monitored after acetone application on the vibrissa pad of the rats. Compression of the trigeminal ganglion was found to produce significant cold allodynia, which persisted for more than 40 days after surgery. On postoperative day 14, the intracisternal administration of $1\;{\mu}g$ or $10\;{\mu}g$ of PD98059 in the rat model significantly decreased the air-puff thresholds on both the ipsilateral and contralateral side. The intracisternal administration of $10\;{\mu}g$ of PD98059 also significantly alleviated the cold allodynia, compared with the vehicle-treated group. These results suggest that central ERK plays an important role in the development of mechanical and cold allodynia in rats with compression of the trigeminal ganglion and that a targeted blockade of this pathway is a potential future treatment strategy for trigeminal neuralgia-like nociception.