• Title/Summary/Keyword: Public-key Cryptography

Search Result 240, Processing Time 0.028 seconds

Deep Learning Based Side-Channel Analysis for Recent Masking Countermeasure on SIKE (SIKE에서의 최신 마스킹 대응기법에 대한 딥러닝 기반 부채널 전력 분석)

  • Woosang Im;Jaeyoung Jang;Hyunil Kim;Changho Seo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.2
    • /
    • pp.151-164
    • /
    • 2023
  • Recently, the development of quantum computers means a great threat to existing public key system based on discrete algebra problems or factorization problems. Accordingly, NIST is currently in the process of contesting and screening PQC(Post Quantum Cryptography) that can be implemented in both the computing environment and the upcoming quantum computing environment. Among them, SIKE is the only Isogeny-based cipher and has the advantage of a shorter public key compared to other PQC with the same safety. However, like conventional cryptographic algorithms, all quantum-resistant ciphers must be safe for existing cryptanlysis. In this paper, we studied power analysis-based cryptographic analysis techniques for SIKE, and notably we analyzed SIKE through wavelet transformation and deep learning-based clustering power analysis. As a result, the analysis success rate was close to 100% even in SIKE with applied masking response techniques that defend the accuracy of existing clustering power analysis techniques to around 50%, and it was confirmed that was the strongest attack on SIKE.

Hardware Design of Elliptic Curve processor Resistant against Simple Power Analysis Attack (단순 전력분석 공격에 대처하는 타원곡선 암호프로세서의 하드웨어 설계)

  • Choi, Byeong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.143-152
    • /
    • 2012
  • In this paper hardware implementation of GF($2^{191}$) elliptic curve cryptographic coprocessor which supports 7 operations such as scalar multiplication(kP), Menezes-Vanstone(MV) elliptic curve cipher/decipher algorithms, point addition(P+Q), point doubling(2P), finite-field multiplication/division is described. To meet structure resistant against simple power analysis, the ECC processor adopts the Montgomery scalar multiplication scheme which main loop operation consists of the key-independent operations. It has operational characteristics that arithmetic units, such GF_ALU, GF_MUL, and GF_DIV, which have 1, (m/8), and (m-1) fixed operation cycles in GF($2^m$), respectively, can be executed in parallel. The processor has about 68,000 gates and its simulated worst case delay time is about 7.8 ns under 0.35um CMOS technology. Because it has about 320 kbps cipher and 640 kbps rate and supports 7 finite-field operations, it can be efficiently applied to the various cryptographic and communication applications.

Hash-Chain based Micropayment without Disclosing Privacy Information (사생활 정보가 노출되지 않는 해쉬체인 기반 소액지불시스템)

  • Jeong Yoon-Su;Baek Seung-Ho;Hwang Yoon-Cheol;Lee Sang-Ho
    • The KIPS Transactions:PartD
    • /
    • v.12D no.3 s.99
    • /
    • pp.499-506
    • /
    • 2005
  • A hash chain is a structure organized by hash function with high speed in computation. Systems using the hash chain are using extensively in various cryptography applications such as one-time passwords, server-supported signatures and micropayments. However, the most hash chain based on the system using pre-paid method provides anonymity but has the problem to increase payment cost. In this paper, we propose a new hash chain based on the micropayment system to keep user anonymity safe through blind signature in the withdrawal process of the root value without disclosing privacy information, and to improve efficiency by using secret key instead of public key in the system without the role of certificate.

A Study on Improving the Subsequent Phase of OMIPv6 Protocol Series (MIPv6 최적화 프로토콜 시리즈의 후속 단계 개선 연구)

  • You, Il-Sun;Kim, Heung-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2039-2046
    • /
    • 2007
  • Recently, OMIPv6 series, based on public-key cryptography, have been proposed to improve RR protocol. This series no typically composed of the initial and subsequent phases. In the initial phase, the mobile node and its corresponding node build a strong long-term key, by which successive binding updates are optimized in the subsequent phase. In this paper, we compare and analyze the subsequent phases of OMIPv6 series in terms of performance, security and applicability, then presenting an improvement on the subsequent phase. Also, we show that the proposed improvement is reasonable considering performance, security and applicability overall.

Incorporating RSA with a New Symmetric-Key Encryption Algorithm to Produce a Hybrid Encryption System

  • Prakash Kuppuswamy;Saeed QY Al Khalidi;Nithya Rekha Sivakumar
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.196-204
    • /
    • 2024
  • The security of data and information using encryption algorithms is becoming increasingly important in today's world of digital data transmission over unsecured wired and wireless communication channels. Hybrid encryption techniques combine both symmetric and asymmetric encryption methods and provide more security than public or private key encryption models. Currently, there are many techniques on the market that use a combination of cryptographic algorithms and claim to provide higher data security. Many hybrid algorithms have failed to satisfy customers in securing data and cannot prevent all types of security threats. To improve the security of digital data, it is essential to develop novel and resilient security systems as it is inevitable in the digital era. The proposed hybrid algorithm is a combination of the well-known RSA algorithm and a simple symmetric key (SSK) algorithm. The aim of this study is to develop a better encryption method using RSA and a newly proposed symmetric SSK algorithm. We believe that the proposed hybrid cryptographic algorithm provides more security and privacy.

Analysis of the Cryptosystem of the Korean Government Public-Key Infrastructure and Ways to Improve It (행정전자서명 암호체계 기술 현황 분석 및 고도화 방향)

  • Younghoon Jung;Dongyoung Roh;Bonwook Koo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.1
    • /
    • pp.13-31
    • /
    • 2023
  • Korean Government-PKI (GPKI) is a public-key infrastructure which provides authentication and security functions for information system used by central government, local governments, and public institutions of the Republic of Korea to provide their own administrative and public services. The current cryptosystem of GPKI was established in the early 2000s, and more than ten years have passed since the last improvement in 2010. Over the past decade or so, the information security, including cryptography, has undergone many changes and will continue to face many changes. Therefore, for the sustainable security of GPKI, it is necessary to review the security of the cryptosystem at this point. In this paper, we analyze the current status and the security of technologies and standards used in the system. We identify cryptographic algorithms with degraded security, international standards which are obsoleted or updated, and cryptographic parameters that should be revised for the high security level. And based on this, we make several suggestions on the reorganization of cryptographic algorithms and related technologies for the security enhancement of GPKI.

Proposal of A Transaction Structure to Improve Compatibility of Blockchain regarding Post-Quantum Digital Signatures (블록체인의 양자 내성 전자서명 호환성을 증대하기 위한 트랜잭션 구조 제안)

  • Kim, Mee Yeon;Lee, Jun Yeong;Yoon, Kisoon;Youm, Heung Youl
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.1
    • /
    • pp.87-100
    • /
    • 2020
  • Researches on Post-quantum blockchain, which is a synthesis of blockchain and post-quantum cryptography[1], are relatively unrevealed areas but have needs to be studied with the regard to the quantum computers. However there could be several fundamental problems, e.g. unsustainably large size of public key and signature, or too lengthy time for sign and verification, if any post-quantum cryptography is adopted to the existing blockchain to implement post-quantum blockchain. Thus, a new method was proposed in this paper that produces fixed length of references for massive signatures and corresponding public keys to enable relatively lightweight transactions. This paper proposed the mechanism that included a new transaction structure and protocols, and demonstrated a post-quantum blockchain that the proposed mechanism was adopted. Through this research, it could enhance compatibility of blockchain regarding post-quantum digital signature, possibly reducing weights of the whole blockchain.

An Efficiency Improved ID-based Tripartite Key Agreement Protocol (효율성을 개선한 신원기반의 3자간 복수 키 합의 프로토콜)

  • Park Young-Ho;Rhee Kyung-Hyune
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.3
    • /
    • pp.77-89
    • /
    • 2005
  • As the ID-based public key cryptosystems become a very active research area, a number of ID-based key agreement protocols have been proposed, but unfortunately many of them were analyzed that there were some security flaws in the protocols. In addition to key agreement protocols, in recent, Liu et al. and Kim et al. proposed the key agreement protocols that multiple session keys are established at once among participated entities. In this paper, we propose an ID-based tripartite key agreement protocol that establishes 8 keys by improving the efficiency of the Liu et al's. Moreover, the proposed protocol can be used in the situation where multiple different private key generators(PKG) are involved. Therefore, because the private key issued by different PKGs belonging to each entity's domain can be used, our proposed scheme is more efficiently applicable to the practical applications.

Practical Password-Authenticated Three-Party Key Exchange

  • Kwon, Jeong-Ok;Jeong, Ik-Rae;Lee, Dong-Hoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.6
    • /
    • pp.312-332
    • /
    • 2008
  • Password-based authentication key exchange (PAKE) protocols in the literature typically assume a password that is shared between a client and a server. PAKE has been applied in various environments, especially in the “client-server” applications of remotely accessed systems, such as e-banking. With the rapid developments in modern communication environments, such as ad-hoc networks and ubiquitous computing, it is customary to construct a secure peer-to-peer channel, which is quite a different paradigm from existing paradigms. In such a peer-to-peer channel, it would be much more common for users to not share a password with others. In this paper, we consider password-based authentication key exchange in the three-party setting, where two users do not share a password between themselves but only with one server. The users make a session-key by using their different passwords with the help of the server. We propose an efficient password-based authentication key exchange protocol with different passwords that achieves forward secrecy in the standard model. The protocol requires parties to only memorize human-memorable passwords; all other information that is necessary to run the protocol is made public. The protocol is also light-weighted, i.e., it requires only three rounds and four modular exponentiations per user. In fact, this amount of computation and the number of rounds are comparable to the most efficient password-based authentication key exchange protocol in the random-oracle model. The dispensation of random oracles in the protocol does not require the security of any expensive signature schemes or zero-knowlegde proofs.

Access Control of Visiting Mobile Node on the Foreign Domain Network in Mobile IPv6

  • Park, Sugil;Masayuki Abe;Kim, Kwangjo
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2002.11a
    • /
    • pp.495-498
    • /
    • 2002
  • The need for network protection, accounting and resource management in foreign administrative domain requires appropriate security services. In this paper, we propose an access control protocol to support the authentication between mobile node and visiting subnet. Our hybrid way of approach aims to reduce computational overhead and minimize the use of network bandwidth. We also propose non-certificate based public-key cryptography to provide non-repudiation, which does not require CRL retrieval and certificate validation.

  • PDF