• Title/Summary/Keyword: Public key encryption with keyword search

Search Result 10, Processing Time 0.02 seconds

Memory-efficient Public Key Encryption with Keyword Search in Server (서버에서 효율적인 메모리 사용량을 제공하는 공개키 기반 검색 암호 시스템)

  • Kwon, Eun-Jeong;Seo, Jae-Woo;Lee, Pil-Joong;Park, Young-Man;Lee, Hae-Gyu;Kim, Yeong-Heon;Chong, Hak-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.4
    • /
    • pp.3-15
    • /
    • 2008
  • In 2000, Song. et. al. firstly proposed the Searchable Keyword Encryption System that treated a problem to search keywords on encrypted data. Since then, various Searchable Keyword Encryption Systems based on symmetric and asymmetric methods have been proposed. However, the Searchable Keyword Encryption Systems based on public key system has a problem that the index size for searching keywords on encrypted data increases linearly according to the number of keyword. In this paper, we propose the method that reduces the index size of Searchable Keyword Encryption based on public key system using Bloom Filter, apply the proposed method to PEKS(Public key Encryption with Keyword Search) that was proposed by Boneh. et. al., and analyze efficiency for the aspect of storage.

Public Key Encryption with Keyword Search for Restricted Testability (검증 능력이 제한된 검색 가능한 공개키 암호시스템)

  • Eom, Ji-Eun;Rhee, Hyun-Sook;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.4
    • /
    • pp.3-10
    • /
    • 2011
  • To provide efficient keyword search on encrypted data, a public key encryption with keyword search (PEKS) was proposed by Boneh et al. A sender encrypts an e-mail and keywords with receiver's public key, respectively and uploads them on a server. Then a receiver generates a trapdoor of w with his secret key to search an e-mail related with some keyword w. However, Byun et al. showed that PEKS and some related schemes are not secure against keyword guessing attacks. In this paper, we propose a public key encryption with keyword search for restricted testability (PEKS-RT) scheme and show that our scheme is secure against keyword guessing attacks.

Public Key Encryption with Equality Test with Designated Tester (고정된 검사자를 고려한 메시지 동일성 검사 공개키 암호시스템)

  • Lee, Young-Min;Koo, Woo-Kwon;Rhee, Hyun-Sook;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.5
    • /
    • pp.3-13
    • /
    • 2011
  • In 2004, Boneh et.al. proposed a public key encryption with keyword search (PEKS) scheme which enables a server to test whether a keyword used in generating a ciphertext by a sender is identical to a keyword used in generating a query by a receiver or not. Yang et. al. proposed a probabilistic public key encryption with equality test (PEET) scheme which enables to test whether one message of ciphertext generated by one public key is identical to the other message generated by the other public key or not. If the message is replaced to a keyword, PEET is not secure against keyword guessing attacks and does not satisfy IND-CP A security which is generally considered in searchable encryption schemes. In this paper, we propose a public key encryption with equality test with designated tester (dPEET) which is secure against keyword guessing attacks and achieves IND-CPA security.

Symmetric Searchable Encryption with Efficient Conjunctive Keyword Search

  • Jho, Nam-Su;Hong, Dowon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1328-1342
    • /
    • 2013
  • Searchable encryption is a cryptographic protocol for searching a document in encrypted databases. A simple searchable encryption protocol, which is capable of using only one keyword at one time, is very limited and cannot satisfy demands of various applications. Thus, designing a searchable encryption with useful additional functions, for example, conjunctive keyword search, is one of the most important goals. There have been many attempts to construct a searchable encryption with conjunctive keyword search. However, most of the previously proposed protocols are based on public-key cryptosystems which require a large amount of computational cost. Moreover, the amount of computation in search procedure depends on the number of documents stored in the database. These previously proposed protocols are not suitable for extremely large data sets. In this paper, we propose a new searchable encryption protocol with a conjunctive keyword search based on a linked tree structure instead of public-key based techniques. The protocol requires a remarkably small computational cost, particularly when applied to extremely large databases. Actually, the amount of computation in search procedure depends on the number of documents matched to the query, instead of the size of the entire database.

Privacy-Preserving Key-Updatable Public Key Encryption with Keyword Search Supporting Ciphertext Sharing Function

  • Wang, Fen;Lu, Yang;Wang, Zhongqi;Tian, Jinmei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.266-286
    • /
    • 2022
  • Public key encryption with keyword search (PEKS) allows a user to make search on ciphertexts without disclosing the information of encrypted messages and keywords. In practice, cryptographic operations often occur on insecure devices or mobile devices. But, these devices face the risk of being lost or stolen. Therefore, the secret keys stored on these devices are likely to be exposed. To handle the key exposure problem in PEKS, the notion of key-updatable PEKS (KU-PEKS) was proposed recently. In KU-PEKS, the users' keys can be updated as the system runs. Nevertheless, the existing KU-PEKS framework has some weaknesses. Firstly, it can't update the keyword ciphertexts on the storage server without leaking keyword information. Secondly, it needs to send the search tokens to the storage server by secure channels. Thirdly, it does not consider the search token security. In this work, a new PEKS framework named key-updatable and ciphertext-sharable PEKS (KU-CS-PEKS) is devised. This novel framework effectively overcomes the weaknesses in KU-PEKS and has the ciphertext sharing function which is not supported by KU-PEKS. The security notions for KU-CS-PEKS are formally defined and then a concrete KU-CS-PEKS scheme is proposed. The security proofs demonstrate that the KU-CS-PEKS scheme guarantees both the keyword ciphertext privacy and the search token privacy. The experimental results and comparisons bear out that the proposed scheme is practicable.

Public Key Encryption with Keyword Search in Multi-Receiver Setting (다중 수신자 환경에서 키워드 검색 가능한 공개키 암호시스템)

  • Rhee, Hyun-Sook;Park, Jong-Hwan;Rhee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.2
    • /
    • pp.31-38
    • /
    • 2009
  • To provide the privacy of a keyword, a public key encryption with keyword search(PEKS) firstly was propsed by Boneh et al. The PEKS scheme enables that an email sender sends an encrypted email with receiver's public key to an email server and a server can obtain the relation between the given encrypted email and an encrypted query generated by a receiver. In this email system, we easily consider the situation that a user sends the one identical encrypted email to multi-receiver like as group e-mail. Hwang and Lee proposed a searchable public key encryption considering multi-receivers. To reduce the size of transmission data and the server's computation is important issue in multi-receiver setting. In this paper, we propose an efficient searchable public key encryption for multi-receiver (mPEKS) which is more efficient and reduces the server's pairing computation.

A Secure and Efficient E-Medical Record System via Searchable Encryption in Public Platform

  • Xu, Lei;Xu, Chungen;Zhang, Xing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4624-4640
    • /
    • 2017
  • This paper mainly presents a secure and efficient e-Medical Record System via searchable encryption scheme from asymmetric pairings, which could provide privacy data search and encrypt function for patients and doctors in public platform. The core technique of this system is an extension public key encryption system with keyword search, which the server could test whether or not the files stored in platform contain the keyword without leaking the information about the encrypted file. Compared with former e-medical record systems, the system proposed here has several superior features: (1)Users could search the data stored in cloud server contains some keywords without leaking anything about the origin data. (2) We apply asymmetric pairings to achieve shorter key size scheme in the standard model, and adopt the dual system encryption technique to reduce the scheme's secure problem to the hard Symmetric External Diffie-Hellman assumption, which could against the variety of attacks in the future complex network environment. (3) In the last of paper, we analyze the scheme's efficiency and point out that our scheme is more efficient and secure than some other classical searchable encryption models.

Concealed Policy and Ciphertext Cryptography of Attributes with Keyword Searching for Searching and Filtering Encrypted Cloud Email

  • Alhumaidi, Hind;Alsuwat, Hatim
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.212-222
    • /
    • 2022
  • There has been a rapid increase in the use of cloud email services. As a result, email encryption has become more commonplace as concerns about cloud privacy and security grow. Nevertheless, this increase in usage is creating the challenge of how to effectively be searching and filtering the encrypted emails. They are popular technologies of solving the issue of the encrypted emails searching through searchable public key encryption. However, the problem of encrypted email filtering remains to be solved. As a new approach to finding and filtering encrypted emails in the cloud, we propose a ciphertext-based encrypted policy attribute-based encryption scheme and keyword search procedure based on hidden policy ciphertext. This feature allows the user of searching using some encrypted emails keywords in the cloud as well as allowing the emails filter-based server toward filter the content of the encrypted emails, similar to the traditional email keyword filtering service. By utilizing composite order bilinear groups, a hidden policy system has been successfully demonstrated to be secure by our dual system encryption process. Proposed system can be used with other scenarios such as searching and filtering files as an applicable method.

New Techniques for Anonymous HIBE with Short Ciphertexts in Prime Order Groups

  • Lee, Kwang-Su;Lee, Dong-Hoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.5
    • /
    • pp.968-988
    • /
    • 2010
  • Anonymous hierarchical identity based encryption (HIBE) is an extension of identity based encryption (IBE) that can use an arbitrary string like an e-mail address for a public key, and it additionally provide the anonymity of identity in ciphertexts. Using the anonymous HIBE schemes, it is possible to construct anonymous communication systems and public key encryption with keyword search. This paper presents an anonymous HIBE scheme with constant size ciphertexts under prime order symmetric bilinear groups, and shows that it is secure under the selective security model. Previous anonymous HIBE schemes were constructed to have linear size ciphertexts, to use composite order bilinear groups, or to use asymmetric bilinear groups that is a special type of bilinear groups. Our construction is the first efficient anonymous HIBE scheme that has constant size ciphertexts and that uses prime order symmetric bilinear groups. Compared to the previous scheme of composite order bilinear groups, ours is ten times faster. To achieve our construction, we first devise a novel cancelable random blinding technique. The random blinding property of our technique provides the anonymity of our construction, and the cancellation property of our technique enables decryption.

Privacy Preserving Keyword Search with Access Control based on DTLS (프라이버시를 보호하는 접근제어가 가능한 키워드 검색 기법)

  • Noh, Geon-Tae;Chun, Ji-Young;Jeong, Ik-Rae;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.5
    • /
    • pp.35-44
    • /
    • 2009
  • To protect sensitive personal information, data will be stored in encrypted form. However in order to retrieve these encrypted data without decryption, there need efficient search methods to enable the retrieval of the encrypted data. Until now, a number of searchable encryption schemes have been proposed but these schemes are not suitable when dynamic users who have the permission to access the data share the encrypted data. Since, in previous searchable encryption schemes, only specific user who is the data owner in symmetric key settings or has the secret key corresponding to the public key for the encrypted data in asymmetric key settings can access to the encrypted data. To solve this problem, Stephen S. Yau et al. firstly proposed the controlled privacy preserving keyword search scheme which can control the search capabilities of users according to access policies of the data provider. However, this scheme has the problem that the privacy of the data retrievers can be breached. In this paper, we firstly analyze the weakness of Stephen S. Yau et al.'s scheme and propose privacy preserving keyword search with access control. Our proposed scheme preserves the privacy of data retrievers.