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Abstract 
 

Anonymous hierarchical identity based encryption (HIBE) is an extension of identity based 
encryption (IBE) that can use an arbitrary string like an e-mail address for a public key, and it 
additionally provide the anonymity of identity in ciphertexts. Using the anonymous HIBE 
schemes, it is possible to construct anonymous communication systems and public key 
encryption with keyword search. This paper presents an anonymous HIBE scheme with 
constant size ciphertexts under prime order symmetric bilinear groups, and shows that it is 
secure under the selective security model. Previous anonymous HIBE schemes were 
constructed to have linear size ciphertexts, to use composite order bilinear groups, or to use 
asymmetric bilinear groups that is a special type of bilinear groups. Our construction is the 
first efficient anonymous HIBE scheme that has constant size ciphertexts and that uses prime 
order symmetric bilinear groups. Compared to the previous scheme of composite order 
bilinear groups, ours is ten times faster. To achieve our construction, we first devise a novel 
cancelable random blinding technique. The random blinding property of our technique 
provides the anonymity of our construction, and the cancellation property of our technique 
enables decryption. 
 
 
Keywords: Cryptography, provable security, identity based encryption, hierarchical identity 
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1. Introduction 

A public key encryption system is one of the essential components of efficient and secure 
digital communication systems. Identity based encryption (IBE) is public key encryption 
where an arbitrary identity string like an e-mail address can be used as a public key. Therefore, 
IBE is a new paradigm of public key encryption that can solve the public key distribution and 
management problems in public key encryption. Hierarchical IBE (HIBE) is a generalization 
of IBE such that the identity is represented as a hierarchical structure and a private key can be 
delegated from a higher level user to a lower level user. The concept of IBE was suggested by 
Shamir in 1984. However, the first efficient and secure construction of IBE was proposed by 
Boneh and Franklin using bilinear groups in [1][2]. The construction of HIBE was presented 
by Gentry and Silverberg in [3]. After that, other constructions of IBE and HIBE were 
presented in [4][5][6][7][8][9][10]. 

The security notion of IBE and HIBE is defined as indistinguishability of messages. That is, 
the ciphertext of IBE and HIBE provides a message hiding property (semantic security). This 
property of security is enough for the traditional digital communication systems since they 
only require the privacy of messages that they transfer. However, as users' concern about 
privacy increases, the need for providing the privacy of additional data in the ciphertext also 
increases. Anonymous IBE and HIBE provide not only the message hiding property but also 
the identity hiding property (anonymity) that gives the privacy of identity information in 
ciphertexts [11]. Because of the identity hiding property, it is not easy to construct anonymous 
IBE and HIBE schemes. Furthermore, it is very hard to construct anonymous HIBE schemes 
because HIBE allows the delegation of private keys and the delegation components of private 
keys hinder the anonymity of ciphertexts. Boyen and Waters proposed the first anonymous 
HIBE scheme [12]. After their realization, many other constructions were proposed by 
extending the techniques of Boyen and Waters [13][14][15][16]. 

1.1 Applications 

The main application of anonymous HIBE is anonymous communication systems [17]. An 
anonymous communication system provides anonymity between sent messages and true 
recipients (recipient anonymity), and anonymity between received messages and true senders 
(sender anonymity). Bellare et al. showed that public key encryption with key-privacy 
(anonymous public key encryption) can be used for anonymous communication systems in 
[18]. For example, consider a system that consists of n users and has a broadcast channel. All n 
users of the system periodically broadcast messages with equal length at a fixed time interval t. 
If a user A want to send a message to a user B, then A creates a ciphertext for B using the 
anonymous public key encryption. If a user does not want to send a message, then he creates a 
random string. Thus, the semantic security, the recipient anonymity, and the sender anonymity 
are provided by the properties of anonymous public key encryption. However, in public key 
encryption, a user should retrieve the public key of the recipient from a public key 
infrastructure. Therefore, an adversary that performs traffic analysis can easily gather the 
information of recipient. In contrast to public key encryption, the process of retrieving a public 
key is not required in IBE and HIBE. Thus, anonymous HIBE is an ideal solution for the 
anonymous communication systems [12]. 

Another important application of anonymous HIBE is public key encryption with keyword 
search (PEKS) [19]. In PEKS, a ciphertext is associated with a keyword x  and a token is 
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associated with a keyword w. Additionally, the ciphertext does not reveal any information of 
the keyword x. If the keyword w is equal with the keyword x, then we can decrypt the 
ciphertext using the token. For example, a user A creates a ciphertext with a keyword x using 
the public key of a user B, and stores it in a public database server. If the user B wants to search 
ciphertexts that have a keyword w, then he generates a token of the keyword w and gives the 
token to the public database server. Then the server tests ciphertexts using the token, and 
returns the ciphertexts if x=w. Boneh et al. constructed the first efficient and secure PEKS 
scheme using the IBE scheme of Boneh and Franklin [19]. Abdalla et al. defined anonymous 
IBE and HIBE, and showed that PEKS and IBE with keyword search (IBEKS) can be 
constructed from anonymous IBE and anonymous HIBE respectively in [11]. Shi et al. 
constructed multi-dimensional range query over encrypted data using anonymous IBE [20]. 

1.2 Previous Methods 

As pointed out previously, the construction of anonymous IBE and HIBE is not easy because 
of the anonymity. The main reason of this difficulty is that the bilinear pairing that enables the 
realization of IBE and HIBE can be a powerful tool for attacking the anonymity of IBE and 
HIBE. That is, if we can re-organize ciphertext elements as the decision Diffie-Hellman 
(DDH) problem using a public key and delegation components of a private key, then we can 
break the anonymity since the bilinear pairing solves the DDH problem easily. After the first 
realization of anonymous HIBE by Boyen and Waters, many anonymous HIBE schemes were 
proposed in [12][13][14][15][16]. The previous strategies of designing anonymous HIBE 
schemes are classified into four methods. 

The first method is a linear splitting technique that was devised by Boyen and Waters [12]. 
This method divides the random exponent of a ciphertext as two different random values. In 
Boneh and Boyen's IBE [4], an adversary can easily break the anonymity since it can create a 

bilinear pairing equation like ( , ( )) ( , ( ) )t ID ID te g hu e g hu  where tg  and ( )IDhu  are 
ciphertext components with a random t. The linear splitting technique prevents the creation of 
bilinear pairing equation by splitting the random t to t1, t2 where t=t1+t2. Intuitively speaking, 
this technique represents a ciphertext as a random point on a 2-dimensional plane using two 
random scalars t1, t2. The anonymity of ciphertexts is easily obtained because a distinguishing 
problem whether a random point is on a 2-dimensional plane or 3-dimensional space is 
equivalent to the decisional Linear (DLIN) assumption. Though, this technique enables the 
construction of anonymous IBE, it is not sufficient for the construction of anonymous HIBE. 
To achieve anonymous HIBE, Boyen and Waters additionally devised a private 
re-randomization technique. In this technique, additional re-randomization components are 
included in a private key instead of a public key, and the re-randomization components can not 
be used to attack the anonymity by making the re-randomization process to be private. Boyen 
and Waters constructed the first anonymous HIBE scheme with linear size ciphertexts under 
prime order symmetric bilinear groups using the two techniques, and proved its security under 
the decisional Bilinear Diffie-Hellman and DLIN assumptions. 

The second method is to use composite order bilinear groups. A composite order bilinear 
group consists of prime order bilinear subgroups where each subgroup is orthogonal to other 
subgroups. In the construction of ciphertexts, we use one subgroup 

1pG  to implement a 

scheme and use another subgroup 
2pG  to randomize the ciphertext (random blinding). In the 

construction of private keys, we use 
1pG  only since it is orthogonal to 

2pG . The random 

blinding elements in ciphertexts provide the anonymity of ciphertexts, and the orthogonal 
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property of subgroups enables the cancellation of random blinding in decryption process. Shi 
and Waters constructed a delegatable hidden vector encryption (dHVE) scheme under 
composite order bilinear groups, and they showed that it imply an anonymous HIBE scheme 
[13]. Seo et al. constructed an anonymous HIBE scheme with constant size ciphertexts under 
composite order bilinear groups [14]. However, the disadvantage of composite order bilinear 
groups is that the group order n should be larger than 1024 bits to defeat the integer 
factorization attacks. Therefore, using composite order bilinear groups is inefficient from 
point of view of ciphertext size and pairing operations when it is compared to prime order 
bilinear groups since prime order bilinear groups only requires 160 bits size of group order. 

The third method is to use asymmetric bilinear groups. The asymmetric bilinear group is a 
prime order bilinear groups with an asymmetric bilinear map 1 2: Te  G G G  where 

1 2,G G  are different and there are no efficiently computable homomorphisms between them. 

In asymmetric bilinear groups, the decision Diffie-Hellman (DDH) assumption holds in two 
groups 1G  and 2G . Thus, the previous IBE schemes that do not provide the anonymity are 

easily converted to anonymous IBE schemes on asymmetric bilinear groups. If we apply the 
private re-randomization techniques of Boyen and Waters to previous HIBE schemes that are 
not anonymous, then anonymous HIBE schemes are easily obtained [12][16]. Additionally, 
anonymous HIBE schemes under composite order bilinear groups are also converted to 
anonymous HIBE schemes under asymmetric prime order bilinear groups [16][21]. However, 
asymmetric bilinear groups have disadvantages such that it is a special kind of prime order 
bilinear groups and it requires strong assumptions for the proof of security. 

The fourth method is to use dual pairing vector space that was devised by Okamoto and 
Takashima in [15]. The dual pairing vector space is higher dimensional vector space of 
bilinear groups with two important properties, namely, the hardness of decomposability and 
the existence of dual orthogonal basis. The hardness of decomposability says that is is hard to 
decompose basis vectors from the ciphertext vector, and this property provides the anonymity 
of ciphertexts. The existence of dual orthogonal basis says that it is possible to compute inner 
product of a ciphertext vector and a private key vector, and this property enables the 
decryption of ciphertexts. Okamoto and Takashima constructed a hierarchical predicate 
encryption (HPE) scheme using the dual pairing vector space, and showed that 2l+6 
dimensional HPE imply l-level anonymous HIBE [15]. However, the disadvantage of this 
approach is that it is hard to construct an anonymous HIBE scheme with constant size 
ciphertexts. 

1.3 Our Contributions 

For the efficiency of anonymous HIBE, it is better to use prime order bilinear groups and have 
constant size ciphertexts than to use composite order bilinear groups and have linear size 
ciphertexts. For the generality of anonymous HIBE, it is preferable to use symmetric bilinear 
groups than to use asymmetric bilinear groups. However, it is currently an unsolved problem 
to construct an anonymous HIBE scheme with constant size ciphertexts under prime order 
symmetric bilinear groups. 

In this paper, we construct an anonymous HIBE scheme with constant size ciphertexts 
under prime order symmetric bilinear groups and prove its security without random oracles. 
To achieve our construction, we first devise a novel cancelable random blinding technique 
that enables the construction of anonymous HIBE under prime order symmetric groups. In this 
technique, the ciphertext components are multiplied by random blinding elements, and the 
random blinding elements are cancellated by a private key in decryption process. Thus, the 
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random blinding property provides the anonymity of ciphertexts and the cancellation property 
provides successful decryption. 

We construct an anonymous HIBE scheme with constant size ciphertexts under prime order 
symmetric bilinear groups and prove its selective security under the decisional l-weak Bilinear 
Diffie-Hellman Inversion (l-wBDHI) and l-Parallel 3-party Diffie-Hellman (l-P3DH) 
assumptions. Compared to the previous scheme of Seo et al. [22], ours is ten times faster. The 
comparison of previous HIBE schemes, anonymous HIBE schemes, and our anonymous 
HIBE scheme are summarized in Table 1. 
 

Table 1. Comparison between previous HIBE scheme and ours 
Scheme Group Order Anonymity Ciphertext Size Assumption 

GS-HIBE [3] p No | | | |Tl G G  RO, BDH 

BB-HIBE [4] p No ( 1) | | | |Tl  G G  BDH 

BBG-HIBE [5] p No 2 | | | |TG G  l-wBDHI 

Wat-HIBE [9] p No ( 8) | | | | | |T pl   G G Z  BDH, DLIN 

LW-HIBE [10] p, asym No 16 | | | |TG G  Static 

BW-HIBE [12] p Yes (2 5) | | | |Tl  G G  BDH, DLIN 

SW-dHVE [13] p1p2p3 Yes ( 3) | | | |Tl  G G  BDH, C3DH 

SKOS-HIBE [14] p1p2 Yes 3 | | | |TG G  l-wBDHI, l-cDH 

OT-HPE [15] p Yes (2 6) | | | |Tl  G G  RDSP, IDSP 

Duc-HIBE [16] p, asym Yes 13 | | | |TG G  l-wBDHI, Pl-DH 

Ours p Yes 6 | | | |TG G  l-wBDHI, l-P3DH

p = prime value, l = hierarchical depth, asym = asymmetric group 

1.4 Related Works 

Boneh and Franklin constructed the first efficient and secure IBE scheme using bilinear 
groups and proved its security under the random oracle model [1][2]. Boneh and Boyen 
constructed two efficient IBE schemes without random oracles and proved that they are secure 
under a weaker selective-ID security model [4]. Waters proposed a fully secure IBE scheme 
without random oracles [6], and Gentry proposed a fully secure IBE scheme with tight security 
reduction using a strong assumption [7]. The IBE schemes of Boneh and Franklin, and Gentry 
provide the anonymity of ciphertexts. IBE is not only a new paradigm of public key encryption 
but also a new solution that provides new methodologies for public key encryption research. 
That is, IBE can be used to construct public key signature [6][9][24][25], chosen ciphertext 
secure public key encryption [24], and public key encryption with keyword search[11][19]. 

IBE can be extended to hierarchical IBE (HIBE) [3][4][5][8][9][10][12][14][26], attribute 
based encryption (ABE) [22][27], and predicate encryption (PE) [11][13][15][19][28][29] 
depends on the structure of identity. 

In HIBE, the identities of users are represented as a hierarchical structure, and the private 
key of a higher level user can be delegated to a lower level user. The concept of HIBE was 
introduced by Horwitz and Lynn, but the first efficient and secure construction was proposed 
by Gentry and Silverberg [3]. Boneh and Boyen constructed an efficient HIBE scheme without 
random oracles [4], and Boneh et al. constructed an efficient HIBE scheme with constant size 
ciphertexts [5]. Boyen and Waters constructed the first anonymous HIBE scheme [12]. In 
contrast to IBE, it is hard to prove the security of HIBE under full model security with efficient 
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reduction because of its hierarchical structure of identity. Recently, Gentry and Halevi 
constructed fully secure HIBE scheme using a strong assumption [8], and Waters also 
constructed fully secure HIBE scheme by introducing dual system encryption [9][10]. The 
main applications of HIBE are forward secure public key encryption [30] and public key 
broadcast encryption [31]. 

In ABE, a private key is associated with an access structure A and a ciphertext is associated 
with a set S of attributes. If S A , then the user of a private key A can decrypt the ciphertext 
of S. The concept of ABE was introduced by Sahai and Waters, and they proposed a fuzzy IBE 
that is a special kind of ABE [27]. Goyal et al. constructed an ABE scheme that supports 
general access structures [22]. If an ABE scheme supports the delegation capability of private 
keys, then it can be converted to an HIBE scheme [22]. However, there is no ABE scheme that 
supports the anonymity of attributes in contrast to HIBE schemes. 

In PE, a ciphertext is associated with a vector x and a private key is associated with a 
predicate f where the ciphertext provides the anonymity of the vector x. If f(x)=1, then the user 
of a private key f can decrypt the ciphertext, but the ciphertext gives no information except 
f(x)=1. The concept of PE was proposed by Boneh et al., and they proposed a public key 
encryption with keyword search (PEKS) scheme that is a special kind of PE [19]. Abdalla et al. 
introduced anonymous IBE and anonymous HIBE, and they showed that PEKS can be 
constructed from anonymous IBE [11]. Boneh and Waters constructed a hidden vector 
encryption (HVE) scheme that support conjunctive equality, conjunctive comparison, and 
subset queries on encrypted data [28]. Katz et al. constructed the most expressive PE scheme 
that supports inner product, and they showed that it can support anonymous IBE, HVE, 
disjunctive operation, evaluation of polynomials, and CNF & DNF queries [29]. Recently, 
delegatable PE was introduced and it can support anonymous HIBE [13][15]. 

2. Background 

We define anonymous HIBE and give the formal definition of its selective security model. 
Next, we review bilinear groups of prime order, and introduce complexity assumptions for our 
constructions. 

2.1 Anonymous Hierarchical Identity Based Encryption 

Let IS  be an identity space and MS  be a message space. A hierarchical identity ID  of depth 

c  is defined as an identity vector 1( , , ) c
cI I IS . A hierarchical identity 1( , , )cID I I   

of depth c  is a prefix of a hierarchical identity 1( , , )dID I I     of depth d  if c d  and for 

all {1, , }i c  , i iI I  . 

An anonymous HIBE scheme consists of five algorithms (Setup, KeyGen, Delegate, 
Encrypt, Decrypt). Formally it is defined as: 

(1 , )Setup l . The setup algorithm takes as input a security parameter 1  and a hierarchical 

depth l . It outputs a public key PK  and a master key MK . 

( , , )KeyGen ID MK PK . The key generation algorithm takes as input a hierarchical identity 
cID IS , the master key MK , and the public key PK . It outputs a private key IDSK . 
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( , , )IDDelegate ID SK PK . The delegation algorithm takes as input a hierarchical identity 
dID IS , a private key IDSK  for a hierarchical identity cID IS , and the public key 

PK . If ID  is a prefix of ID , then it outputs a delegated private key IDSK   for ID . 

( , , )Encrypt ID M PK . The encryption algorithm takes as input a hierarchical identity 
dID IS , a message M MS , and the public key PK . It outputs a ciphertext CT  for 

ID  and M . 

( , , )IDDecrypt CT SK PK . The decryption algorithm takes as input a ciphertext CT  for ID , 
a private key IDSK  for a hierarchical identity ID , and the public key PK . It outputs an 

encrypted message M . 

The scheme should satisfy the following correctness property: for all , dID ID IS , 

M MS , let ( , ) (1 , )PK MK Setup l , ( , , )IDSK KeyGen ID MK PK , and 

( , , )CT Encrypt ID M PK . 

-  If ID ID , then ( , , )IDDecrypt CT SK PK M . 

 
We define the selective security model of anonymous HIBE as the following game between 

a challenger C  and an adversary A : 

Init: A  submits two hierarchical identities * *
0 1, lID ID IS . 

Setup: C  runs the setup algorithm (1 , )Setup l  to generate a master key MK  and a public 

key PK . It keeps MK  to itself and gives PK  to A . 

Query 1: A  adaptively requests private keys for hierarchical identities 
11, , qID ID  subject 

to the restriction that iID  is not a prefix of *
0ID  and *

1ID . In responses, C  gives the 

corresponding private keys 
iIDSK  to A  by running the key generation algorithm 

( , , )iKeyGen ID MK PK . 

Challenge: A  submits two message * *
0 1,M M  with equal length. C  flips a random coin 

{0,1}   and gives the challenge ciphertext *CT  to A  by running the encryption 

algorithm * *( , , )Encrypt ID M PK  . 

Query 2: A  continue to request private keys for hierarchical identities 
1 1, ,q qID ID   

subject to the restriction as before. 

Guess: A  outputs a guess {0,1}   of  , and wins the game if    .  

The advantage of A  is defined as Pr[ ] 1 2AHIBE
AAdv       where the probability is 

taken over the coin tosses made by A  and C . 

 

Definition 1. We say that an anonymous HIBE scheme is selectively secure if all probabilistic 
polynomial-time adversaries have at most a negligible advantage in the above game. 

2.2 Bilinear Groups of Prime Order 
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Let G  and TG  be multiplicative cyclic groups of prime p  order. Let g  be a generator of 

G . The bilinear map : Te  G G G  has the following properties: 

1. Bilinearity: ,u v G  and , pa b Z , ( , ) ( , )a b abe u v e u v . 

2. Non-degeneracy: g  such that ( , ) 1e g g  , that is, ( , )e g g  is a generator of TG . 

We say that , TG G  are bilinear groups if the group operations in G  and TG  as well as the 

bilinear map e  are all efficiently computable. 

2.3 Complexity Assumptions 

We introduce two assumptions under prime order bilinear groups. The decisional l-weak 
Bilinear Diffie-Hellman Inversion (l-wBDHI) assumption was used in [5]. The decisional 
l-Parallel 3-party Diffie-Hellman (l-P3DH) assumption is newly introduced for our 
construction. 
 

l-weak Bilinear Diffie-Hellman Inversion (l-wBDHI) Assumption Let ( , , , )Tp eG G  be a 

description of the bilinear group of prime order p . The decisional l-wBDHI problem is stated 
as follows: given a challenge tuple 

2

(( , , , ), , , , , ) and ,
la a a c

TD p e g g g g g T G G  

decides whether 
1

( , )
la cT e g g


  or T R  with random choices of , ,p Ta c R Z G . The 

advantage of A  in solving the decisional l-wBDHI problem is defined as 
1

Pr[ ( , ( , ) ) 1] Pr[ ( , ) 1]
ll wBDHI a c

AAdv A D T e g g A D T R
        

where the probability is taken over the random choices of ,D T  and the random used by A . 

 

Definition 4. We say that the decisional l-wBDHI assumption holds if no probabilistic 
polynomial-time algorithm has a non-negligible advantage in solving the decisional l-wBDHI 
problem. 
 

l-Parallel 3-party Diffie-Hellman (l-P3DH) Assumption Let ( , , , )Tp eG G  be a description 

of the bilinear group of prime order p . The decisional l-P3DH problem is stated as follows: 
given a challenge tuple 

2 1
1 2

2 1
1 2

(( , , , ), , , , , , , ,

         , , , , , , ) and ,

l l

l l

z za a a a c
T

z za a a a c

D p e g g g g g f g f

f f f f f g f g T



  

 



G G
 

decides whether 
1 1

3 3( , )
l lz za c a cT Q g f f g
     or 3 3( , )z zd dT R g f f g    with random 

choices of , , pa c d Z , and 1 2 3, , pz z z Z . The advantage of A  in solving the decisional 

l-P3DH problem is defined as 
3 Pr[ ( , ) 1] Pr[ ( , ) 1]l P DH

AAdv A D T Q A D T R        
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where the probability is taken over the random choices of ,D T  and the random used by A . 

 
Definition 5. We say that the decisional l-P3DH assumption holds if no probabilistic 
polynomial-time algorithm has a non-negligible advantage in solving the decisional l-P3DH 
problem. 

3. Anonymous HIBE 

We define anonymous HIBE and give the formal definition of its selective security model. 
Next, we review bilinear groups of prime order, and introduce complexity assumptions for our 
constructions. 

3.1 Design Principle 

To provide the anonymity of ciphertexts under prime order symmetric bilinear groups, we first 
devise a new cancelable random blinding technique. In this technique, ciphertext components 
are multiplied by random blinding elements to provide the anonymity of ciphertexts. 
Additionally, the multiplied random blinding elements are cancellated by pairing operations 
with the private key of a user. To use this new technique, we use two instances of HIBE 
schemes in parallel. The first instance of HIBE is multiplied by random blinding elements, and 
the second instance of HIBE is also multiplied by blinding elements to cancellate the random 
blinding of the first instance. Though the random blinding of two instances are the same, an 
adversary can not attack the anonymity of ciphertexts. 

For the construction of anonymous HIBE, additional technique is required since anonymous 
HIBE allows the delegation of private keys and the delegated private keys can be used to 
attack the anonymity of ciphertexts. To overcome this problem, we use the private 
re-randomization technique of Boyen and Waters [12]. In this technique, the re-randomization 
components of a private key are included in the private key instead of a public key, and the 
re-randomization components of a user A is only used for the user A. That is, this technique 
can prevent an adversary from attacking the anonymity of ciphertexts using the 
re-randomization components of other users. 

3.2 Construction 

(1 , )Setup l : The setup algorithm first generates the bilinear group G  of prime order p  of 

bit size ( ) . Next, it chooses random elements 1, , , , , ,lg v h u u w G , random 

exponents , px  Z , and random blinding values ,1 ,, , , , ,v h u u l w pz z z z z  Z . It keeps 

1, , , , , , ,lv h u u w g x  as a master key MK , and then it publishes a public key PK  as 

follows 
,1 ,

,1 ,

2

1 1 1 1 1
1 1

2 2 2 2 2
1 1

(1 )

( , , , , , , ,

           , , , , , , ,

           ( , ) )

u u lv h w

u u lv h w

xz xzxz xz xz
l l

z zz z zx x x x x x
l l

x

PK g V vg H hg U u g U u g W wg

g V v g H h g U u g U u g W w g

e v g 

   



     

    

 



  
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( , , )KeyGen ID MK PK : The key generation algorithm takes as input a hierarchical identity 

1( , , ) c
c pID I I  Z  and the master key MK . It selects random exponents 1 2, pr r Z  

and computes decryption components of a private key as 
1 2 1 2 1 11 1 1 1 1

1 1 2 3 4, 1 1 4,

2 1 2 1 2 1 2 1 2 1
1 1 2 2 3 3 4, 1 4, 1 4, 4,

( ) , , , , , ,

( ) , ( ) , ( ) , ( ) , , ( ) .

iI r r r r r rc
i i c c l l

x x x x x
c c l l

K g h u w K v K v K u K u

K K K K K K K K K K

  
  

 

     

    




 

Next, it selects random exponents 3 4 5 6, , , pr r r r Z  and computes randomization 

components of a private key as 
3 3 3 34 4

5 6 5 6 5 5

1,1 1,1 1,1 1,1 1,1
1 1 2 3 4, 1 1 4,

1,2 1,2 1,2 1,2 1,2
1 1 2 3 4, 1 1 4,

2,1 1,1 2,1 1,1 2,1 1,1
1 1 2 2 3 3

( ) , , , , , ,

( ) , , , , , ,

( ) , ( ) , ( )

i

i

I r r r rr rc
i i c c l l

I r r r r r rc
i i c c l l

x x x

L h u w L v L v L u L u

L h u w L v L v L u L u

L L L L L L

 
  

 
  

     

     

  





2,1 1,1 2,1 1,1
4, 1 4, 1 4, 4,

2,2 1,2 2,2 1,2 2,2 1,2 2,2 1,2 2,2 1,2
1 1 2 2 3 3 4, 1 4, 1 4, 4,

, ( ) , , ( ) ,

( ) , ( ) , ( ) , ( ) , , ( ) .

x x
c c l l

x x x x x
c c l l

L L L L

L L L L L L L L L L

 

 

 

    





 

Finally, it outputs a private key as 
1 1 1 1 1 1, 1, 1, 1, 1, 2
1 2 3 4, 1 4, 1 2 3 4, 1 4, 1

2 2 2 2 2 2, 2, 2, 2, 2, 2
1 2 3 4, 1 4, 1 2 3 4, 1 4, 1

( , , , , , ,{( , , , , , )} ,

             , , , , , ,{( , , , , , )} ).

k k k k k
ID c l c l k

k k k k k
c l c l k

SK K K K K K L L L L L

K K K K K L L L L L

  

  

  

 
 

 

( , , )IDDelegate ID SK PK : The delegation algorithm takes as input a hierarchical identity 

1( , , ) d
d pID I I   Z  and a private key IDSK  for a hierarchical identity 

1( , , ) c
c pID I I  Z  where ID  is a prefix of ID . It first selects random exponents 

1 2, p  Z . For all {1,2}j , it computes decryption components of a private key as 

1 2

1 2 1 2

1 2

,1 ,1 ,2 ,2
1 1 1 4, 1 1 4, 1 1 4,

,1 ,2 ,1 ,2
2 2 2 2 3 3 3 3

,1 ,2
4, 1 4, 1 4, 1 4, 1 4, 4, 4,

( ) ( ( ) ) ( ( ) ) ,

( ) ( ) , ( ) ( ) ,

( ) ( ) , , (

i i iI I Ij j d j j d j j d j
i c i i c i i c i

j j j j j j j j

j j j j j j
d d d d l l l

K K K L L L L

K K L L K K L L

K K L L K K L

 

   

 

     

   

    

   

   



 

  1 2,1 ,2
4,) ( ) .j j

lL 

 

Next, it selects random exponents 3 4 5 6, , , p    Z . For all {1,2}j , it computes 

randomization components of a private key as 
3 34 4

3 3 34 4 4

,1 ,1 ,1 ,2 ,2 ,1 ,1 ,2
1 1 1 4, 1 1 4, 2 2 2

,1 ,1 ,2 ,1 ,1 ,2 ,1 ,1 ,2
3 3 3 4, 1 4, 1 4, 1 4, 4, 4,

,2 ,1
1 1

( ( ) ) ( ( ) ) , ( ) ( ) ,

( ) ( ) , ( ) ( ) , , ( ) ( ) ,

(

i iI Ij j d j j d j j j j
i c i i c i

j j j j j j j j j
d d d l l l

j j

L L L L L L L L

L L L L L L L L L

L L

  

    

   

  

   

  

 

 

  

 5 6 5 6

5 6 5 6 5 6

,1 ,2 ,2 ,2 ,1 ,2
1 4, 1 1 4, 2 2 2

,2 ,1 ,2 ,2 ,1 ,2 ,2 ,1 ,2
3 3 3 4, 1 4, 1 4, 1 4, 4, 4,

( ) ) ( ( ) ) , ( ) ( ) ,

( ) ( ) , ( ) ( ) , , ( ) ( ) .

i iI Id j j d j j j j
i c i i c i

j j j j j j j j j
d d d l l l

L L L L L L

L L L L L L L L L

   

     

   

  

 

  



  

 

Finally, it outputs a delegated private key as 
1 1 1 1 1 1, 1, 1, 1, 1, 2
1 2 3 4, 1 4, 1 2 3 4, 1 4, 1

2 2 2 2 2 2, 2, 2, 2, 2, 2
1 2 3 4, 1 4, 1 2 3 4, 1 4, 1

( , , , , , ,{( , , , , , )} ,

              , , , , , ,{( , , , , , )} ).

k k k k k
ID d l c l k

k k k k k
d l c l k

SK K K K K K L L L L L

K K K K K L L L L L

   

  

           

          
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( , , )Encrypt ID M PK : The encryption algorithm takes as input a hierarchical identity 

1( , , ) d
d pID I I  Z , a message TM G , and the public key PK . It chooses a random 

exponent ptZ  and random blinding values 1 2 3, , pz z z Z . Then it outputs a ciphertext 

as 
31 2

31 2

1 1 1 1 1 1 1
0 1 2 1 3

2 2 2 2 2 2 2
1 2 1 3

( , ( ) , ( ( ) ) , ( ) ,

          ( ) , ( ( ) ) , ( ) ).

i

i

I xzxz xzt t d t t
i i

I zz zt d t t
i i

CT C M C V g C H U g C W g

C V g C H U g C W g



 


      

   
 

 

( , , )IDDecrypt CT SK PK : The decryption algorithm takes as input a ciphertext CT  and a 

private key IDSK  for a hierarchical identity 1( , , ) d
d pID I I  Z . It outputs an 

encrypted message as 
3 1 1 2 2 1

0 1( ( , ) ( , )) .i i i i iM C e C K e C K 
     

3.3 Correctness 

To show that the above anonymous HIBE scheme satisfy the correctness property, we should 
prove that private keys from the key generation and delegation algorithms are identically 
distributed, and that a ciphertext from the encryption algorithm is correctly decrypted by the 
decryption algorithm using a private key that is generated by the key generation or delegation 
algorithm. 

We first show that private keys from the key generation and delegation algorithms are 
identically distributed. A private key consists of decryption components and re-randomization 
components. The decryption components of a private key are re-randomized as follows in the 
delegation algorithm. If 3 6 5 4 0modr r r r p  , then new values 1 2,r r   are uniformly distributed 

in pZ  since 1 2,   are uniformly chosen in pZ . Note that the probability of 

3 6 5 4 0modr r r r p   is1 p , that is, negligible since 3 4 5 6, , ,r r r r  are random values in pZ . 

3 51 1 1

4 62 2 2

r rr r

r rr r




      
        

      




 

The re-randomization components of a private key are re-randomized as follows in the 
delegation algorithm. In this case, new values 3 4 5 6, , ,r r r r     are uniformly distributed in pZ  

since 3 6 5 4 0modr r r r p   and 3 4 5 6, , ,     are uniformly chosen in pZ . 

3 5 3 5 3 5

4 6 4 6 4 6

r r r r

r r r r

 
 

     
      

     

 

 
 

Next, we show that a ciphertext from the encryption algorithm is correctly decrypted by the 
decryption algorithm using a private key from the key generation algorithm since the 
distribution of private keys from the key generation and delegation algorithms are identical. 
The following simple calculation shows that a session key is correctly recovered from the 
decryption algorithm. 
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1 1

1 , 2 1 , 2

3

3 1 1 2 2
1

( ) ( )1 1
1 1

(( ) ) (( ) )1 1
1 1 1 2

( ) (1
3

( , ) ( , )

( , ) ( , ( ) )

   (( ) , ) (( ) , ( ) )

   ( , ) (

v v

d d
h i u i i h i u i ii i

w

i i i i i

x z t z z t zt xt x

x z z I t z z z I t zI xId t x d t x
i i i i

x z t zt xt

e C K e C K

e v g K e v g K

e h u g K e h u g K

e w g K e w g

 



  

    
 

 

 

  

   

 3 ) 1
3, ( ) )

( , ) ( , )

wz t z x

t x x t

K

e v g e v g 





 

3.4 Security 

We show that our construction is secure in the selective security model under the decisional 
l-wBDHI and l-P3DH assumptions. We later show that our construction can be proven to be 
secure in chosen ciphertext security and full model security. 
 
Theorem 1. The above anonymous HIBE construction is selectively secure under the 
decisional l-wBDHI and l-P3DH assumptions. 
 
Proof. The proof uses a sequence of games. The first game will be the original security game 
and the last one will be a game such that the adversary has no advantage. We define the games 
as follows. 

Game0. This game is the original selective security game in Section 2.1. 
Game1. We define the Game1 as follows. This game is almost identical to Game0 except in 

the way that the challenge ciphertext component 0C  is generated. If * *
0 1M M , then the 

simulator generates the challenge ciphertext component 0C  by multiplying a random 

elements in TG , and it generates the rest of the ciphertext components as usual. Otherwise, it 

is created as normal. 
Game2. We modify Game1 into a new game Game2. This game is the same with the Game1 

except that the challenge ciphertext components 2 3,j jC C  are generated. The simulator creates 

1
jC  as normal for all j. However, it creates 2 3,j jC C  using a new random exponent s. That is, 

the challenge ciphertext components are distributed as follows 
31 2

31 2

1 1 1 1 1 1 1
1 2 1 3

2 2 2 2 2 2 2
1 2 1 3

( ) , ( ( ) ) , ( ) ,

( ) , ( ( ) ) , ( ) .

i

i

I xzxz xzt d s s
i i

I zz zt d s s
i i

C V g C H U g C W g

C V g C H U g C W g



 


   

   
 

Additionally, if * *
0 1M M , then 0C  is replaced by a random elements from TG . Otherwise, 

it is created as normal. 
Game3. Finally, we define a game Game3. In this game, the simulator creates the challenge 

ciphertext components 1
jC  as normal for all j. However, it creates 2 3,j jC C  as completely 

random elements in G . Additionally, if * *
0 1M M , then 0C  is replaced by a completely 

random elements from TG . Otherwise, it is created as normal. Note that in Game3, the 

challenge ciphertext gives no information about *ID  and *M  . Therefore, the adversary's 

advantage in this game is zero. 
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Through the following three lemmas, we prove that it is hard to distinguish Gamei-1 from 
Gamei under the given assumptions. Thus, the proof is easily obtained by the following three 
lemmas. This completes our proof. 
 
Lemma 1. If the decisional l-wBDHI assumption holds, then no polynomial-time adversary 
can distinguish between Game0 and Game1 with a non-negligible advantage. 
 
Proof. Suppose there exists an adversary A that distinguishes between Game0 and Game1 with 
a non-negligible advantage. A simulator B that solves the decisional l-wBDHI assumption 

using A is given: a challenge tuple 
2

(( , , , ), , , , , )
la a a c

TD p e g g g g g G G  and T  where 
1

( , )
la cT e g g


  or TT R G . Then B that interacts with A is described as follows. 

Init: A gives two hierarchical identities * * *
0 0,1 0,( , , )lID I I   and * * *

1 1,1 1,( , , )lID I I  . B then 

flips a random coin {0,1}   internally. 

Setup: B first chooses random exponents 1, , , , , ,l pv h u u w x      Z . It keeps these as a 

master key and computes 
*1

,

1, ( ) ,
l i

i iu Iv h l a
iv g h g g 

   
    1

1 ( ) , , ( ) ,
l

luua a
lu g u g    

ww g  . Next, it implicitly sets 
1lag g 

  and publishes a public key using random 

blinding values ,1 ,, , , , ,v h u u l w pz z z z z  Z  as 

,1 ,

,1 ,

2

1 1 1 1 1
1 1

2 2 2 2 2
1 1

(1 )

, , , , , , ,

, , , , , , ,

( , ) .

u u lv h w

u u lv h w

l

xz xzxz xz xz
l l

z zz z zx x x x x x
l l

a a x

g V vg H hg U u g U u g W wg

g V v g H h g U u g U u g W w g

e g g

   



    

    

 



  

Query 1: A adaptively requests a private key for 1( , , )cID I I  . Let *
,( )i i iI I I   . 

There exists a smallest index k such that 0kI   and 1 k c   since A can not request a 

private key for ID  that is a prefix of *ID . B chooses random exponents 1 2, pr r Z  and 

creates decryption components of the private key as 
*1 1

,

*1 1
, 1 2

1
11 2

11
1 1 1

1

1 1 1
2 3 4,

(( ) ( ) ( ) )

        ( ( ) ( ) ) ,

( ) , ,{ ( ) (

k l i k l i k
i i i i k k

l i l i
i i i i

k l i k l
k k i

u I u I u Ia h l a c a
i c i k

u I u I r rh l a c a
i c i k

v u I u rv r ra a a
i

K g g g

g g g w

K g g K v K g g





     

   

   

     
   

   
  

      

  

 

  
1

1

2 1 2 1 2 1 2 1
1 1 2 2 3 3 4, 4, 1

) } ,

( ) , ( ) , ( ) ,{ ( ) } .

i k
i k ku u I l

i c

x x x x l
i i i cK K K K K K K K

    
 

    

 

Next, it chooses random exponents 3 4 5 6, , , pr r r r Z  and creates randomization 

components of the private key since it knows 1, , , , ,lv h u u w  and x . 

If we define the randomness of the private key as 1 1 modk
k kr r a u I p    , then the 

distribution of the private key is correct as follows 
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*1 1 1
, 1 2

*1 1
,

*1 1
, 1

1
1 1

1
1 1

1

( ( ) ( ) )

(( ) ( ) ( ) )

  ( ( ) ( ) )

kl l i l i
i i i i k k

k l i k l i k
i i i i k k

l i l i
i i i i

u I u I r a u I ra h l a c a
i c i k

u I u I u Ia h l a c a
i c i k

u I u I r rh l a c a
i c i k

K g g g g w

g g g

g g g w







    

     

   

      
  

     
   

   
  

  

  

  2 .

 

Challenge: A submits two messages * *
0 1,M M . If * *

0 1M M , then B aborts and takes a 

random guess. Otherwise, it chooses random blinding values 1 2 3, , pz z z Z  and outputs a 

challenge ciphertext as 
2

31 2

31 2

(1 ) * 1 1 1
0 1 2 3

2 2 2
1 2 3

( ) , ( ) , ( ) , ( ) ,

( ) , ( ) , ( ) .

xzxz xzv x c v c h c w

zz zc v x c h x c w x

C T M C g g C g g C g g

C g g C g g C g g


   

    

   

  
 

If 
1

( , )
la cT e g g


 , then B is playing Game0. Otherwise, it is playing Game1. 

Query 2: Same as Query Phase 1. 

Guess: A outputs a guess   . If    , it outputs 0. Otherwise, it outputs 1. 

This completes our proof.  
 
Lemma 2. If the decisional l-P3DH assumption holds, then no polynomial-time adversary can 
distinguish between Game1 and Game2 with a non-negligible advantage. 
 
Proof. Suppose there exists an adversary A that distinguishes between Game1 and Game2 with 
a non-negligible advantage. A simulator B that solves the decisional l-P3DH assumption using 

A is given: a challenge tuple 
2 1

1 2(( , , , ), , , , , , , ,  , ,
l l z za a a a c a

TD p e g g g g g f g f f f


 G G  
2 1

1 2, , , , ) 
l l z za a a cf f f g f g

   and 1 2( , )T T T  where 
1 1

3 3( , )
l lz za c a cT g f f g
    or 

3 3( , )z zd dT g f f g  . Then B that interacts with A is described as follows. 

Init: A gives two hierarchical identities * * *
0 0,1 0,( , , )lID I I   and * * *

1 1,1 1,( , , )lID I I  . B then 

flips a random coin {0,1}   internally. 

Setup: B first chooses random exponents 1, , , , , ,l pv h u u w       Z . It keeps these as a 

master key and implicitly sets 
*1 1

, 1
1 1, ( ) , , ,

l l i l
i iu I uv a h l a a

iv g h g g u g
     

      
1

, ,
l

lua a w x
lu g w g g f

    . Next, it publishes a public key using random blinding 

values ,1 ,, , , , ,v h u u l w pz z z z z  Z  as 

*1 1
, ,11 1

1
, 1

*1 1
, ,11 1

1 1 1
1 1

1 1

2 2 2
1 1

2

, , ( ) ( ) , ( ) , ,

( ) , ( ) ,

, , ( ) ( ) , ( ) , ,

( )

l l i l
i i uv h

l
u ll w

l l i l
i i uv h

l

u I zz zz uv a h l a a
i

zu zza a w
l

u I zz zz uv a h l a a
i

ua
l

g V g f H g f g f U g f

U g f W g f f

f V f g H f g f g U f g

U f g





  



  

  


 

   




   

 

   






1

, 12, ( ) , ( , ) ( , ) .
l

u l wz zza w v vW f g g e g g e f f      
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Query 1: A adaptively requests a private key for 1( , , )cID I I  . Let *
,( )i i iI I I   . 

There exists a smallest index k such that 0kI   and 1 k c   since A can not request a 

private key for ID  that is a prefix of *ID . B chooses random exponents 1 2, pr r Z  and 

creates decryption components of the private key as 

 

* *1 1 1 1
, ,1 2

1
1 2 11 2 1

1
1 1 1 1

( ) ( )1 1 1
2 3 4,

( ( ) ( ) ) ( ( ) ( ) ) ,

( ) , ( ) , ( )

l i l i l i k l i k
i i i ii i i i

k k l i
k k i

u I u Iu I u Ir rl a c a l a c a
i c i k i c i k

v h r u I r w u rv r v r v h r wa a a
i

K g g g g g

K g g K g g K g

           

 

     
      

                

    

  
1

2

* *1 1 1 1
, ,1 2

1 21 2 1

2
1 1 1 1

( ) ( )2 2
2 3 4,

( ) ,

( ( ) ( ) ) ( ( ) ( ) ) ,

( ) , ( ) ,

l i k
i

l i l i l i k l i k
i i i ii i i i

k k
k k

u ra

u I u Iu I u Ir rl a c a l a c a
i c i k i c i k

v h r u I r wv r v r v h r wa a

g

K f f f f f

K f f K f f K

 

  

         

 

     
      

              

    

 
1 1

1 22 ( ) ( ) .
l i l i k

i iu r u ra a
i f f

       

 

To show that the above components are the same as the one in the original game, we define 
the randomness of the private key as 

1 1 2 2 1 2 2mod ,  ( ) ( ) modk k
k kr r r a p r h r u I r w h r a w p                 

It is not hard to see that 1 2,r r  are independent random values since 0kI  . Thus the 

distribution of the above components are correct as follows 
*1 1 1 1

, 1 2 21 2

* *1 1 1
, ,1

( ) ( )1
1 1

1 1

( ( ) ( ) ) ( )

    ( ( ) ( ) ) ( ( )

kkl l i l i l
i i i i k k

l i l i l i k
i i i ii i

u I u I h r u I r w h r a wr r aa h l a c a a w
i c i k

u I u Iu I rl a c a l a
i c i k i c i k

K g g g g g

g g g g



 





     

      

               
  

   
      

  

    
1

2

1 2 1 2

1 2 2 1 2 1

1 1 1
1 2 1

1

( )1
2

( ( ) ( ) ) ( ) ( )1
3

( )1
4,

( ) ) ,

( ) ,

( ) ,

( ) ( ) (

l i k
i i

k k

k k
k k k k

kl i l i l i k
i i

u I rc a

v r r a v r v ra

v h r u I r w h r a w v h r u I r w v h r wa

u r r a u ra a a
i

g

K g g g

K g g g

K g g g

  

      

 

         

                        

    

 

 

  2) .iu r 

 

The randomization components of the private key is similar to the decryption components 

of the private key except g . Since B selects   itself, it can generate the randomization 

components using random exponents 3 4 5 6, , , pr r r r   Z  similar to the above. Therefore, we 

omit the generation of the randomization components of the private key. 

Challenge: A submits two messages * *
0 1,M M . If * *

0 1M M , then B computes 

2 2 *
0 ( ( , ) ( , ))z zc c vC e g f g e f g f M


   . Otherwise, it chooses a random elements in 

TG  for 0C . Next, it chooses random blinding values ,1 ,2 ,3, ,c c c pz z z Z  and outputs a 

challenge ciphertext as 
,1 ,2 ,32

,1 ,2 ,32

1 1 1
1 2 1 3 1

2 2 2
1 2 2 3 2

( ) , ( ) , ( ) ,

( ) , ( ) , ( ) .

c c c

c c c

z z zzc v h w

z z zzc v h w

C g f f C T f C T f

C f g g C T g C T g

  

    

  

  
 

If 
1 1

3 3( , )
l lz za c a cT g f f g
   , then B is playing Game1. Otherwise, it is playing Game2 as 

follows 
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2 ,1 ,12

* * 11 1
, 3 ,2 1 1 , ,,1

1 1
,23

1 1
3 ,3 11

1
1

( )1
2 1

(1
3

( ) ( ) ,

(( ) ( ) )

    ( ) ,

(( ) )

c v cv

l ll l
i c h i u i iu ih

l l
c

l l
c ww

v z z cz zz zv c c v

I h z z h z z z I d azzza h l d a
i

zza d a h

w z z w z zzza w d a

C g f f g f f

C g f f f f

g f f

C g f f f

 
 



 

 

   

    




   

 

 




1 1 1

,33) ( ) .
l l l

cd a zza d a wg f f
   

 

where c and 1ld a   are independent random values. 

Query 2: Same as Query Phase 1. 

Guess: A outputs a guess   . If    , it outputs 0. Otherwise, it outputs 1. 

This completes our proof.  
 
Lemma 3. If the decisional l-P3DH assumption holds, then no polynomial-time adversary can 
distinguish between Game2 and Game3 with a non-negligible advantage. 
 
Proof. Suppose there exists an adversary A that distinguishes between Game2 and Game3 with 
a non-negligible advantage. A simulator B that solves the decisional l-P3DH assumption using 

A is given: a challenge tuple 
2 1

1 2(( , , , ), , , , , , , ,  , ,
l l z za a a a c a

TD p e g g g g g f g f f f


 G G  
2 1

1 2, , , , ) 
l l z za a a cf f f g f g

    and 1 2( , )T T T  where 
1 1

3 3( , )
l lz za c a cT g f f g
    or 

3 3( , )z zd dT g f f g  . Then B that interacts with A is described as follows. 

Init: A gives two hierarchical identities * * *
0 0,1 0,( , , )lID I I   and * * *

1 1,1 1,( , , )lID I I  . B then 

flips a random coin {0,1}   internally. 

Setup: B first chooses random exponents 1, , , , , ,l pv h u u w       Z . It keeps these as a 

master key and implicitly sets 
*1 1

, 1
1 1, ( ) , , ,

l l i
i iu I ua v a h l a a

iv g h g g u g
    

      

, ,
l

lua w x
lu g w g g f    . Next, it publishes a public key using random blinding values 

,1 ,, , , , ,v h u u l w pz z z z z  Z  as 

*1 1
, ,11 1 1

,

*1 1
, ,11 1 1

1 1 1
1 1

1 1

2 2 2
1 1

2

, ( ) , ( ) ( ) , ( ) , ,

( ) , ,

, ( ) , ( ) ( ) , ( ) , ,

( )

l l i
i i uv h

l
u ll w

l l i
i i uv h

l

u I zz zz z ua v a h l a a
i

zu za w
l

u I zz zz z ua v a h l a a
i

ua
l

g V g f f H g f g f U g f

U g f W g f

f V f g g H f g f g U f g

U f





 

 

  


 

    




   

 

   







, 2, , ( , ) ( , ) .
l l

u ll wz zw a a v a a vg W f g e g g e f f      

 

Query 1: A adaptively requests a private key for 1( , , )cID I I  . Let *
,( )i i iI I I   . 

There exists a smallest index k such that 0kI   and 1 k c   since A can not request a 

private key for ID  that is a prefix of *ID . B chooses random exponents 1 2, pr r Z  and 

creates a private key as 
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* *1 1 1 1
, ,1 2

1 1
1 11 2

1
1 1 1 1

1 1 1
2 3 4,

( ( ) ( ) ) ( ( ) ( ) ) ,

( ) ( ) , ( ) , ( ) ( )

l k i k i k l i i
i i i ii i i i

l k l l i k i
k k i i

u I u Iu I u Ir ra h l a c a a h l a c a
i c i k i c i k

v u I r w u r uv r v ra a a a a
i

K g g g g g g g

K g g K g K g g

        

   

      
      

           

    

   2

* *1 1 1 1
, ,1 2

1 1
1 11 2

2
1 1 1 1

2 2 2
2 3 4,

,

( ( ) ( ) ) ( ( ) ( ) ) ,

( ) ( ) , ( ) , ( ) (

l k i k i k l i i
i i i ii i i i

l k l l i k i
k k i

r

u I u Iu I u Ir ra h l a c a a h l a c a
i c i k i c i k

v u I r w u rv r v ra a a a a
i

K f f f f f f f

K f f K f K f f

        

   



      
      

          

    

   2) .iu r 

 
To show that the above private key is the same as the one in the original game, we define 
the randomness of the private key as 

1
1 1 2 2 1mod ,  ( ) modk

k kr r a r a p r u I r w a p          

It is not hard to see that 1 2,r r  are independent random values since 0kI  . Thus the 

distribution of the above private key is correct as follows 
* 11

, 11 2

*1 1
, 1

*1 1
,

( )1
1 1

1 1

1

( ( ) ( ) ) ( )

    ( ( ) ( ) )

        ( ( ) ( )

kl i i
i i i i k k

l k i k i k
i i i i

l i i
i i

u I u I u I r w ar a r aa h l a c a w
i c i k

u I u I ra h l a c a
i c i k

u Ia h l a c a
i c i k

K g g g g g

g g g g

g g g













    

 

        
  

   
   

 
  

  

  

  2

11 1
1 11 2 1 2

1 1 1
1 2 1 2

( ( ) )( )1 1
2 3

( )1
4,

) ,

( ) ( ) , ( ) ,

( ) ( ) ( ) .

i i

ll k l k l l
k k k k

ki i k i
i i i

u I r

a v u I r w a v u I r wa v r a r a v r v ra a a

u r a r a u r u ra a a
i

K g g g K g g

K g g g

  

   



                    

      

   

 

 

The randomization components of the private key is similar to the decryption components 

of the private key except g . Since B selects   itself, it can generate the randomization 

components using random exponents 3 4 5 6, , , pr r r r   Z  similar to the above. Therefore, we 

omit the generation of the randomization components of the private key. 

Challenge: A submits two messages * *
0 1,M M . If * *

0 1M M , then B selects a random 

exponent ptZ  and computes *
0

tC M   . Otherwise, it chooses a random elements in 

TG  for 0C . Next, it chooses random blinding values ,1 ,2 ,3, ,c c c pz z z Z  and outputs a 

challenge ciphertext as 
1

,1 ,2 ,31 2

1
,1 ,2 ,31 2

1 1 1
1 2 1 3

2 2 2
1 2 2 3

( ) , ( ) , ( ) ,

( ) , ( ) , ( ) .

l
c c c

l
c c c

z z zz za v t h c w

z z zz za v t h c w

C g f f C T f C g f f

C f g g C T g C f g g





  

     

  

  
 

If 
1 1

3 3( , )
l lz za c a cT g f f g
   , then B is playing Game2. Otherwise, it is playing Game3 as 

follows 
1 1

1 ,1 ,11 1

* * 11 1
, 3 ,2 1 1 , ,,1

1 1
,23

2 ,3

( )1
1

( )1
2 1

1
3

(( ) ) ( ) ,

(( ) ( ) )

    ( ) ,

( )

l l
c v v cv

l ll l
i c h i u i iu ih

l l
c

cw

v tz z v z z t zzz za v t a v t

I h z z h z z z I d azzza h l d a
i

zza d a h

w z zzw c

C g f f f g f f

C g f f f f

g f f

C g f f

 

 

 


 

    

    




  

 

 



 ,32( ) .w ccz zzc wg f f
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where t, 1ld a  , and c are independent random values. 

Query 2: Same as Query Phase 1. 

Guess: A outputs a guess   . If    , it outputs 0. Otherwise, it outputs 1. 

This completes our proof. 

3.4 Extensions 

Full Model Security. In the full model security, an adversary selects a target identity at the 
challenge phase of the security model in contrast to the selective model security where the 
adversary select the target identity at the initialization phase. Boneh et al. showed that a 
selectively secure HIBE scheme can be converted to a fully secure HIBE scheme with 
exponential loss of security reduction [4][5]. Our construction of the selective model security 
also can be made to provide the full model security with exponential loss of security reduction. 
Chosen Ciphertext Security. In the chosen ciphertext security, an adversary can access to 
additional decryption oracles of the scheme. Canettie et al. showed that a chosen ciphertext 
secure l-level HIBE scheme can be constructed from a chosen plaintext secure l+1-level HIBE 
scheme [24]. If we adapt the method of Canettie et al., then our construction of this paper also 
can provide the chosen ciphertext security. 

Asymmetric Bilinear Groups. The bilinear map 1 2: Te  G G G  of asymmetric bilinear 

groups is defined as 1 2,G G  are different and there are no efficiently computable 

homomorphisms between two groups. In asymmetric bilinear groups, the decision 
Diffie-Hellman (DDH) assumption still holds in 1G  and 2G . Therefore, the anonymity of 

ciphertexts is easily obtained. Our construction also can be converted to use asymmetric 
bilinear groups. In this case, the cancelable random blinding technique is not required. Thus, 
our construction under asymmetric bilinear groups is the same as the construction of Seo et al. 
[14] under asymmetric bilinear groups. 

4. Performance Analysis 

For the comparison of performance, we compare our construction under prime order bilinear 
groups with the construction of Seo et al. [14] under composite order bilinear groups. 

 
Table 2. The detailed information of bilinear groups 

Bilinear Group Security Group Order | |G  | |G  expT  
pairT  

Composite Order 80 bits 1024 bits 1024 bits 2048 bits 2( )O rb  757 ms

Prime Order 80 bits 160 bits 512 bits 1024 bits 2( )O rb  25 ms 

expT  = exponentiation time, 
expT  = pairing time, r = the size of group, b = the size of G  

 
The detailed information of composite order bilinear groups and prime order symmetric 
bilinear groups is summarized in Table 2. In composite order bilinear groups, the order of 
groups should be larger than 1024 bits to defeat the integer factorization attacks. Thus, the size 
of group elements in G  is 1024 bits and the size of group elements in TG  is 2048 bits. In 

contrast, the order of prime order bilinear groups is only 160 bits to provide 80 bits security 
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level. Thus the size of group elements in G  is 512 bits and the size of groups elements in TG  

is 1024 bits. For the comparison of pairing time in each groups, we use the data in PBC library. 
 

Table 3. Comparison of two anonymous HIBE schemes 
Scheme |PK| |SK| |CT| KeyGen Encrypt Decrypt 

SKOS-HIBE 1024l bits 3072(l-d)  bits 5120 bits 3l
expT  d

expT  2271 ms 

Ours 1024l bits 3072(l-d) bits 4096 bits 6l
expT  2d

expT  150 ms 

Ratio 1/1 1/1 1.25/1 12.8/1 12.8/1 15.1/1 

l = hierarchical depth, d = identity depth 

 
The comparison between two constructions is summarized in Table 3. The public key size and 
private key size of two constructions is the same. However, the ciphertext size of ours is 20% 
shorter. If the operation time of two schemes is compared, there is big difference. The main 
operation of the key generation and encryption algorithms is an exponentiation operation. One 
exponentiation in prime order symmetric bilinear groups is approximately 

3 21024 (160 512 ) 25.6   times faster than the one in composite order groups. Thus the key 
generation and encryption algorithms of ours is 12.8 times faster. The main operation of the 
decryption algorithm is a pairing operation. One pairing in prime order symmetric bilinear 
groups is approximately 30.2 times faster than the one in composite order bilinear groups. 
Therefore, the decryption algorithm of ours is 15.1 times faster. 

5. Conclusions 

In this paper, we presented a new cancelable random blinding technique for the construction of 
anonymous HIBE, and this technique is different from the previous known techniques. Using 
our technique, we constructed an anonymous HIBE scheme with constant size ciphertexts 
under prime order symmetric bilinear groups, and proved its selective model security. Our 
technique has an independent interest, and it may be possible to use this technique for the 
construction of other encryption schemes in prime order bilinear groups. 

An interesting open problem is to construct an anonymous HIBE scheme with constant size 
ciphertexts under prime order symmetric bilinear groups that can be prove to be fully secure 
with reasonable loss of reduction. One idea for this construction is to use the dual system 
encryption method by Waters [9][10]. However, the simple combination of these methods 
does not solve the problem because the dual encryption system of [9][10] does not work for an 
HIBE scheme with constant size ciphertexts under prime order symmetric bilinear groups. 
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