• Title/Summary/Keyword: Public key cryptography

Search Result 240, Processing Time 0.063 seconds

Circulant UOV: a new UOV variant with shorter private key and faster signature generation

  • Peng, Zhiniang;Tang, Shaohua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1376-1395
    • /
    • 2018
  • UOV is one of the most important signature schemes in Multivariate Public Key Cryptography (MPKC). It has a strong security guarantee and is considered to be quantum-resistant. However, it suffers from large key size and its signing procedure is relatively slow. In this paper, we propose a new secure UOV variant (Circulant UOV) with shorter private key and higher signing efficiency. We estimate that the private key size of Circulant UOV is smaller by about 45% than that of the regular UOV and its signing speed is more than 14 times faster than that of the regular UOV. We also give a practical implementation on modern x64 CPU, which shows that Circulant UOV is comparable to many other signature schemes.

Simpler Efficient Group Signature Scheme with Verifier-Local Revocation from Lattices

  • Zhang, Yanhua;Hu, Yupu;Gao, Wen;Jiang, Mingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.414-430
    • /
    • 2016
  • Verifier-local revocation (VLR) seems to be the most flexible revocation approaches for any group signature scheme, because it just only requires the verifiers to possess some up-to-date revocation information, but not the signers. Langlois et al. (PKC 2014) proposed the first VLR group signature based on lattice assumptions in the random oracle model. Their scheme has at least Õ(n2) ⋅ log N bit group public key and Õ(n) ⋅ log N bit signature, respectively. Here, n is the security parameter and N is the maximum number of group members. In this paper, we present a simpler lattice-based VLR group signature, which is more efficient by a O(log N) factor in both the group public key and the signature size. The security of our VLR group signature can be reduced to the hardness of learning with errors (LWE) and small integer solution (SIS) in the random oracle model.

An Asymmetric Key-Based Security Architecture for Wireless Sensor Networks

  • Haque, Md. Mokammel;Pathan, Al-Sakib Khan;Hong, Choong-Seon;Huh, Eui-Nam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.5
    • /
    • pp.265-277
    • /
    • 2008
  • In spite of previous common assumptions about the incompatibility of public key cryptography (PKC) schemes with wireless sensor networks (WSNs), recent works have shown that they can be utilized for such networks in some manner. The major challenge of employing a PKC-based scheme in a wireless sensor network is posed by the resource limitations of the tiny sensors. Considering this sensor feature, in this paper we propose an efficient PKC-based security architecture with relatively lower resource requirements than those of previously proposed PKC schemes for WSN. In addition, our scheme aims to provide robust security in the network. Our security architecture comprises two basic components; a key handshaking scheme based on simple, linear operations and the derivation of a decryption key by a receiver node. Our architecture enables node-to-base-station and node-to-node secure communications. Analysis and simulation results show that our proposed architecture ensures a good level of security for network communications, and can be effectively implemented with the limited computational, memory, and energy budgets of current-generation sensor nodes.

A Fair-Exchange E-Payment Protocol For Digital Products With Customer Unlinkability

  • Yen, Yi-Chung;Wu, Tzong-Chen;Lo, Nai-Wei;Tsai, Kuo-Yu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.11
    • /
    • pp.2956-2979
    • /
    • 2012
  • Along with the development of Information Technology, online transactions through Internet have become more popular for the reasons of convenience and efficiency. In order to provide secure and reliable online transactions, an effective electronic payment protocol is crucial. In this paper, we propose a novel electronic payment protocol for digital product transactions with an offline arbiter to achieve fair exchange, automated dispute resolution, customer anonymity, and customer unlinkability. In our protocol a product token is adopted to eliminate the need of key management for digital product decryption in the offline arbiter. In addition, Elliptic Curve Cryptography (ECC)-based self-certified public key is utilized to further reduce computing overheads. According to our analysis, the efficiency of our protocol can be greatly increased in comparison with previous literatures.

Design and Implementation of Web-based Electronic Bidding System using XML (웹 기반의 XML을 활용한 전자 입찰 시스템의 설계 및 구현)

  • 윤선희
    • The Journal of Information Systems
    • /
    • v.10 no.1
    • /
    • pp.127-146
    • /
    • 2001
  • The area of business applications in the internet are extended enormously in result of fast development of computing and communication technologies, increase of internet use, and use of intranet/extranet in enterprise information system. Widely spread the use of the internet, there are various applications for Business to Business (B to B) or Business to Customer(B to C) model that are based on the intranet or extranet. This paper designed and implemented the Web-based Electronic Bidding System for Business to Business (B to B) model. The technical issues of electronic bidding system in the internet are involved in the connection between web client and server, electronic data interchange for the contract document, and security solution during the bidding and contracting processes. The web-based electronic bidding system in this paper is implemented using Java applet and servlet as a connection interface for web client and server, XML/EDI-based documents for a bid and a contract, and bidding server and notary server for enhancing the security using PKI(Public Key Infrastructure)-based public key cryptography, digital signature and Certification Authority(CA).

  • PDF

Identity-based Deniable Authenticated Encryption for E-voting Systems

  • Jin, Chunhua;Chen, Guanhua;Zhao, Jianyang;Gao, Shangbing;Yu, Changhui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3299-3315
    • /
    • 2019
  • Deniable authentication (DA) is a protocol in which a receiver can generate an authenticator that is probabilistically indistinguishable from a sender. DA can be applied in many scenarios that require user privacy protection. To enhance the security of DA, in this paper, we construct a new deniable authenticated encryption (DAE) scheme that realizes deniable authentication and confidentiality in a logical single step. Compared with existing approaches, our approach provides proof of security and is efficient in terms of performance analysis. Our scheme is in an identity-based environment; thus, it avoids the public key certificate-based public key infrastructure (PKI). Moreover, we provide an example that shows that our protocol is applicable for e-voting systems.

Optimizing Multiprecision Squaring for Efficient Public Key Cryptography on 8-bit Sensor Nodes (8 비트 센서 노드 상에서 효율적인 공개키 암호를 위한 다정도 제곱 연산의 최적화)

  • Kim, Il-Hee;Park, Yong-Su;Lee, Youn-Ho
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.6
    • /
    • pp.502-510
    • /
    • 2009
  • Multiprecision squaring is one of the most significant algorithms in the core public key cryptography operation. The aim of this work is to present a new improved squaring algorithm compared with the MIRACL's multi precision squaring algorithm in which the previous work [1] on multiprecision multiplication is implemented. First, previous works on multiprecision multiplication and standard squaring are analyzed. Then, our new Lazy Doubling squaring algorithm is introduced. In MIRACLE library [3], Scott's Carry-Catcher Hybrid multiplication technique [1] is applied to implementation of multiprecision multiplication and squaring. Experimental results of the Carry-Catcher hybrid squaring algorithm and the proposed Lazy Doubling squaring algorithm both of which are tested on Atmega128 CPU show that proposed idea has achieved significant performance improvements. The proposed Lazy Doubling Squaring algorithm reduces addition instructions by the fact $a_0\;{\ast}\;2\;+\;a_1\;{\ast}\;2\;+\;...\;+\;a_{n-1}\;{\ast}\;2\;+\;a_n\;{\ast}\;2\;=\;(a_0\;+\;a_1\;+\;...\;+\;a_{n-1}\;+\;a_n)\;{\ast}\;2$ while the standard squaring algorithm reduces multiplication instructions by the fact $S_{ij}\;=\;x_i\;{\ast}\;x_j\;=\;S_{ij}$. Experimental results show that the proposed squaring method is 25% faster than that in MIRACL.

A Scalable Structure for a Multiplier and an Inversion Unit in $GF(2^m)$

  • Lee, Chan-Ho;Lee, Jeong-Ho
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.315-320
    • /
    • 2003
  • Elliptic curve cryptography (ECC) offers the highest security per bit among the known public key cryptosystems. The operation of ECC is based on the arithmetic of the finite field. This paper presents the design of a 193-bit finite field multiplier and an inversion unit based on a normal basis representation in which the inversion and the square operation units are easy to implement. This scalable multiplier can be constructed in a variable structure depending on the performance area trade-off. We implement it using Verilog HDL and a 0.35 ${\mu}m$ CMOS cell library and verify the operation by simulation.

  • PDF

233-bit ECC processor supporting NIST B-233 elliptic curve (NIST B-233 타원곡선을 지원하는 233-비트 ECC 프로세서)

  • Park, Byung-Gwan;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.158-160
    • /
    • 2016
  • 전자서명(ECDSA), 키 교환(ECDH) 등에 사용되는 233-비트 타원곡선 암호(Elliptic Curve Cryptography; ECC) 프로세서의 설계에 대해 기술한다. $GF(2^{333})$ 상의 덧셈, 곱셈, 나눗셈 등의 유한체 연산을 지원하며, 하드웨어 자원 소모가 적은 쉬프트 연산과 XOR 연산만을 이용하여 구현하였다. 스칼라 곱셈은 modified montgomery ladder 알고리듬을 이용하여 구현하였으며, 정수 k의 정보를 노출하지 않고, 단순 전력분석에 보다 안전하다. 스칼라 곱셈 연산은 최대 490,699 클록 사이클이 소요된다. 설계된 ECC 프로세서는 Xilinx ISim을 이용한 시뮬레이션 결과값과 한국인터넷진흥원(KISA)의 참조 구현 값을 비교하여 정상 동작함을 확인하였다. Xilinx Virtex5 XC5VSX95T FPGA 디바이스 합성결과 1,576 슬라이스로 구현되었으며, 189 MHz의 최대 동작주파수를 갖는다.

  • PDF

Strongly-Connected Hierarchical Grid-Based Pairwise Key Predistribution Scheme for Static Wireless Sensor Networks (정적 무선 센서 네트워크를 위한 강한 연결성을 가진 계층적 그리드 기반의 키 선분배 기법)

  • Nyang Dae-Hun;Abedelaziz Mohaisen
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.7 s.349
    • /
    • pp.14-23
    • /
    • 2006
  • Wireless Sensor Network(WSN) consists of huge number of sensor nodes which are small and inexpensive with very limited resources. The public key cryptography is undesirable to be used in WSN because of the limitations of the resources. A key management and predistribution techniques are required to apply the symmetric key cryptography in such a big network. Many key predistribution techniques and approaches have been proposed, but most of-them didn't consider the real WSN assumptions, In this paper, we propose a security framework that is based on a hierarchical grid for WSN considering the proper assumptions of the communication traffic and required connectivity. We apply simple keying material distribution scheme to measure the value of our framework. Finally, we provide security analysis for possible security threats in WSN.