• Title/Summary/Keyword: Public Key Encryption Algorithm

Search Result 67, Processing Time 0.024 seconds

Design and Implementation of EAI(Enterprise Application Integration) System for Privacy Information (개인정보 보호를 위한 EAI 시스템 설계 및 구현)

  • Kim, Yong Deok;Jun, Moon Seog
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.1
    • /
    • pp.51-58
    • /
    • 2013
  • This paper describes the design and implementation of the PKI-based EAI system which is used for delivery of sensitive personal information between business systems. For this purpose, we propose a key exchange protocol with some key process : Diffie-Hellman Schema is used to provide forward secrecy, public key-based digital signature is used for EAI Server authentication, data integrity. In addition, in order to minimize the performance impact on the overall EAI systems. The EAI server was designed simply to be used only as a gateway. This paper shows the implementation of Korea public key authentication algorithm standard and a symmetric encryption algorithm for data encryption.

Optical Implementation of Asymmetric Cryptosystem Combined with D-H Secret Key Sharing and Triple DES

  • Jeon, Seok Hee;Gil, Sang Keun
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.592-603
    • /
    • 2015
  • In this paper, an optical implementation of a novel asymmetrical cryptosystem combined with D-H secret key sharing and triple DES is proposed. The proposed optical cryptosystem is realized by performing free-space interconnected optical logic operations such as AND, OR and XOR which are implemented in Mach-Zehnder type interferometer architecture. The advantage of the proposed optical architecture provides dual outputs simultaneously, and the encryption optical setup can be used as decryption optical setup only by changing the inputs of SLMs. The proposed cryptosystem can provide higher security strength than the conventional electronic algorithm, because the proposed method uses 2-D array data, which can increase the key length surprisingly and uses 3DES algorithm, which protects against “meet in the middle” attacks. Another advantage of the proposed asymmetrical cryptosystem is that it is free to change the user’s two private random numbers in generating the public keys at any time. Numerical simulation and performance analysis verify that the proposed asymmetric cryptosystem is effective and robust against attacks for the asymmetrical cipher system.

Optical Secret Key Sharing Method Based on Diffie-Hellman Key Exchange Algorithm

  • Jeon, Seok Hee;Gil, Sang Keun
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.477-484
    • /
    • 2014
  • In this paper, we propose a new optical secret key sharing method based on the Diffie-Hellman key exchange protocol required in cipher system. The proposed method is optically implemented by using a free-space interconnected optical logic gate technique in order to process XOR logic operations in parallel. Also, we present a compact type of optical module which can perform the modified Diffie-Hellman key exchange for a cryptographic system. Schematically, the proposed optical configuration has an advantage of producing an open public key and a shared secret key simultaneously. Another advantage is that our proposed key exchange system uses a similarity to double key encryption techniques to enhance security strength. This can provide a higher security cryptosystem than the conventional Diffie-Hellman key exchange protocol due to the complexity of the shared secret key. Results of numerical simulation are presented to verify the proposed method and show the effectiveness in the modified Diffie-Hellman key exchange system.

An Authenticated Encryption Scheme without Block Encryption Algorithms (블록 암호 알고리즘을 사용하지 않는 인증 암호화 방법)

  • Lee, Mun-Kyu;Kim, Dong-Kyue;Park, Kunsun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.5
    • /
    • pp.284-290
    • /
    • 2002
  • We propose a new authenticated encryption scheme that does not require any block encryption algorithm. Our scheme is based on the Horster-Michels-Petersen authenticated encryption scheme, and it uses a technique in the Bae~Deng signcryption scheme so that the sender's signature can be verified by an arbitrary third party. Since our scheme does not use any block encryption algorithm, we can reduce the code size in its implementation. The computation and communication costs of the proposed scheme are almost the same as those of the Bao-Deng scheme that uses a block encryption algorithm. Our scheme also satisfies all the security properties such as confidentiality, authenticity and nonrepudiation.

Attribute-based Broadcast Encryption Algorithm applicable to Satellite Broadcasting (위성방송에 적용 가능한 속성기반 암호전송 알고리즘)

  • Lee, Moon-Shik;Kim, Deuk-Su;Kang, Sun-Bu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.9-17
    • /
    • 2019
  • In this paper, we propose an attribute-based broadcast encryption algorithm that can be applied to satellite broadcasting network. The encryption algorithm is a cryptographic method by which a carrier(sender) can transmit contents efficiently and securely to a plurality of legitimate users through satellites. An attribute-based encryption algorithm encrypts contents according to property of contents or a user, In this paper, we combine effectively two algorithms to improve the safety and operability of satellite broadcasting network. That is, it can efficiently transmit ciphertexts to a large number of users, and has an advantage in that decoding can be controlled by combining various attributes. The proposed algorithm reduces the network load by greatly reducing the size of the public key, the private key and the cipher text in terms of efficiency, and the decryption operation amount is reduced by half to enable fast decryption, thereby enhancing the operability of the user.

A Secure Subscription-Push Service Scheme Based on Blockchain and Edge Computing for IoT

  • Deng, Yinjuan;Wang, Shangping;Zhang, Qian;Zhang, Duo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.445-466
    • /
    • 2022
  • As everything linking to the internet, people can subscribe to various services from a service provider to facilitate their lives through the Internet of Things (IoT). An obligatory thing for the service provider is that they should push the service data safely and timely to multiple IoT terminal devices regularly after the IoT devices accomplishing the service subscription. In order to control the service message received by the legal devices as while as keep the confidentiality of the data, the public key encryption algorithm is utilized. While the existing public encryption algorithms for push service are too complicated for IoT devices, and almost of the current subscription schemes based on push mode are relying on centralized organization which may suffer from centralized entity corruption or single point of failure. To address these issues, we design a secure subscription-push service scheme based on blockchain and edge computing in this article, which is decentralized with secure architecture for the subscription and push of service. Furthermore, inspired by broadcast encryption and multicast encryption, a new encryption algorithm is designed to manage the permissions of IoT devices together with smart contract, and to protect the confidentiality of push messages, which is suitable for IoT devices. The edge computing nodes, in the new system architecture, maintain the blockchain to ensure the impartiality and traceability of service subscriptions and push messages, meanwhile undertake some calculations for IoT devices with limited computing power. The legalities of subscription services are guaranteed by verifying subscription tags on the smart contract. Lastly, the analysis indicates that the scheme is reliable, and the proposed encryption algorithm is safe and efficient.

Mobile Banking Systems Using Personal Digital Assistants (PDA를 이용한 모바일 뱅킹 시스템)

  • An, Geon-Ho;Yang, Su-Cheol;Chu, Yeong-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.143-146
    • /
    • 2003
  • In mobile Internet banking service through wireless local area network, security is a most important factor to consider. We describe the development of mobile banking service using Personal Digatal Assistant (PDA). In order to increase the strength of encryption, we adopted hybrid approach where both of the public key algorithm and the secret key algorithm are used during the transaction among PDA, banking server and authentication server.

  • PDF

Study on Improvement of Weil Pairing IBE for Secret Document Distribution (기밀문서유통을 위한 Weil Pairing IBE 개선 연구)

  • Choi, Cheong-Hyeon
    • Journal of Internet Computing and Services
    • /
    • v.13 no.2
    • /
    • pp.59-71
    • /
    • 2012
  • PKI-based public key scheme is outstanding in terms of authenticity and privacy. Nevertheless its application brings big burden due to the certificate/key management. It is difficult to apply it to limited computing devices in WSN because of its high encryption complexity. The Bilinear Pairing emerged from the original IBE to eliminate the certificate, is a future significant cryptosystem as based on the DDH(Decisional DH) algorithm which is significant in terms of computation and secure enough for authentication, as well as secure and faster. The practical EC Weil Pairing presents that its encryption algorithm is simple and it satisfies IND/NM security constraints against CCA. The Random Oracle Model based IBE PKG is appropriate to the structure of our target system with one secret file server in the operational perspective. Our work proposes modification of the Weil Pairing as proper to the closed network for secret file distribution[2]. First we proposed the improved one computing both encryption and message/user authentication as fast as O(DES) level, in which our scheme satisfies privacy, authenticity and integrity. Secondly as using the public key ID as effective as PKI, our improved IBE variant reduces the key exposure risk.

Design and Implementation of a Secure E-Document Transmission System based Certificate for CEDA (Certified E-Document Authority) (공인전자문서보관소를 위한 인증서 기반의 안전한 전자문서 전송시스템 설계 및 구현)

  • Kim, Dae-Jung;Kim, Jung-Jae;Lee, Seung-Min;Jun, Moon-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.370-378
    • /
    • 2008
  • The CEDA(Certified E-Document Authority) is a reliable third party that deposit electronic document having legal effects securely, and verify contents of document or transmission. This paper focuses on a function of secure transmission among several important functions, and implements public key encryption system for secure transmission when server and user communicate for image transmission. This paper follows a standard fundamental rule of X.509 in ITU-T, and it uses symmetric encryption algorithm to raise speed of a large data operation. A key of symmetric encryption algorithm is encrypted by private key in public key system, it protects to be modified using digital signature for data integrity. Also it uses certificates for mutual authentication.

Secure Attribute-Based Access Control with a Ciphertext-Policy Attribute-Based Encryption Scheme

  • Sadikin, Rifki;Park, Young Ho;Park, Kil Houm
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • An access control system is needed to ensure only authorized users can access a sensitive resource. We propose a secure access control based on a fully secure and fine grained ciphertext-policy attribute-based encryption scheme. The access control for a sensitive resource is ensured by encrypting it with encryption algorithm from the CP-ABE scheme parameterized by an access control policy. Furthermore, the proposed access control supports non-monotone type access control policy. The ciphertext only can be recovered by users whose attributes satisfy the access control policy. We also implement and measure the performance of our proposed access control. The results of experiments show that our proposed secure access control is feasible.