• 제목/요약/키워드: Pt supported on carbon

검색결과 61건 처리시간 0.021초

Acid Treatments of Carbon Nanotubes and Their Application as Pt-Ru/CNT Anode Catalysts for Proton Exchange Membrane Fuel Cell

  • Kim, Min-Sik;Lim, Sin-Muk;Song, Min-Young;Cho, Hyun-Jin;Choi, Yun-Ho;Yu, Jong-Sung
    • Carbon letters
    • /
    • 제11권4호
    • /
    • pp.336-342
    • /
    • 2010
  • Different oxidation treatments on CNTs using diluted 4.0 M $H_2SO_4$ solution at room temperature and or at $90^{\circ}C$ reflux conditions were investigated to elucidate the physical and chemical changes occurring on the treated CNTs, which might have significant effects on their performance as catalyst supports in PEM fuel cells. Raman spectroscopy, X-ray diffraction and transmission electron microscope analyses were made for the acid treated CNTs to determine the particle size and distribution of the CNT-supported Pt-Ru nanoparticles. These CNT-supported Pt-based nanoparticles were then employed as anode catalysts in PEMFC to investigate their catalytic activity and single-cell performance towards $H_2$ oxidation. Based on PEMFC performance results, refluxed Pt-Ru/CNT catalysts prepared using CNTs treated at $90^{\circ}C$ for 0.5 h as anode have shown better catalytic activity and PEMFC polarization performance than those of the commercially available Pt-Ru/C catalyst from ETEK and other Pt-Ru/CNT catalysts developed using raw CNT, thus demonstrating the importance of acid treatment in improving and optimizing the surface properties of catalyst support.

백금담지 활성탄소 촉매의 요오드화수소 분해 특성 연구 (A Study on the HI Decomposition by Carbon-Supported Platinum Catalyst)

  • 박정은;김정민;강경수;김창희;김영호;박주식;배기광
    • 한국수소및신에너지학회논문집
    • /
    • 제17권3호
    • /
    • pp.301-308
    • /
    • 2006
  • The present work explores the effect of carbon-supported platinum catalyst on the HI decomposition using gas adsorption analyzer, thermogravimetry, X-ray diffractometry, scanning electron microscopy, and gas chromatography. For this purpose, three types of activated carbon (C), Pt/C-1 wt.%, and Pt/C-5 wt.% were prepared. The HI gas conversion is crucially influenced by the amount of Pt on the carbon support. The more the amount of Pt was, the higher results in the HI gas conversion. For three types of catalysts, HI conversion increased with increasing the decomposition temperature but with decreasing the space velocity. The increase of HI conversion with temperature was more pronounced in activated carbon than that in Pt/C. From EDX result, it was found that the activated carbon comprised higher amount of iodine than the Pt/C after the decomposition reaction. This implies that the HI conversion is closely related to the amount of Iodine.

폴리올 프로세스를 통한 연료전지용 백금 촉매 제조 (Investigation of carbon supported pt nano catalyst preparation by the polyol process for fuel cell applications)

  • 오형석;김한성
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.200-203
    • /
    • 2007
  • Parametric investigation of the polyol process for the preparation of carbon supported Pt nano particles as catalysts for fuel cells was carried out. It was found that the concentration of glycolate anion, which is a function of pH, plays an important role in controlling Pt particle size and loading on carbon. It was observed that Pt loading decreased with increasing alkalinity of the solution. As evidenced by zeta potential measurement, this was mainly due to poor adsorption or repulsive forces between the metal colloids and the supports. In order to modify the conventional polyol process, the effect of the gas purging conditions on the characteristics of Pt/C was examined. By the optimization of the gas environment during the reaction, it was possible to obtain high loading of 39.5wt% with a 2.8 nm size of Pt particle. From the single cell test, it was found that operating in ambient $O_{2}$ at 70oC can deliver high performance of more than 0.6 V at 1.44 A $cm^{-2}$.

  • PDF

Characteristics of Pt-Ru Catalyst Supported on Activated Carbon for Direct Methanol Fuel Cell

  • Jung, Doo-Hwan;Jung, Jae-Hoon;Hong, Seong-Hwa;Peck, Dong-Hyun;Shin, Dong-Ryul;Kim, Eui-sik
    • Carbon letters
    • /
    • 제4권3호
    • /
    • pp.121-125
    • /
    • 2003
  • The Pt-Ru/Carbon as an anode catalyst supported on the commercial activated carbon (AC) having high surface area and micropore was characterized for application of Direct Methanol Fuel Cell (DMFC). The Pt-Ru/AC anode catalyst used in this experiment showed the performance of $600\;mA/cm^2$ current density at 0.3 V. The borohydride reduction process using $NaBH_4$, denoted as a process A, showed much higher current and power densities than process B prepared by changing the reduction and washing process of process A. The particle sizes are strongly affected by the reduction process than the specific surface area of raw active carbon and the sizes are almost constant when the specific surface area of carbon are over than the $1200\;m^2/g$. Smaller particle size of catalyst and more narrow intercrystalite distance increased the performance of DMFC.

  • PDF

탄소나노튜브에 담지된 PtCo 촉매 제조 및 PEMFC Cathode 전극 특성 (Synthesis of Carbon Nanotubes Supported PtCo Electrocatalysts and Its Characterization for the Cathode Electrode of PEMFC)

  • 정동원;박순;강정탁;김준범
    • 한국재료학회지
    • /
    • 제19권5호
    • /
    • pp.233-239
    • /
    • 2009
  • The electrocatalytic behavior of the PtCo catalyst supported on the multi-walled carbon nanotubes (MWNTs) has been evaluated and compared with commercial Pt/C catalyst in a polymer electrolyte membrane fuel cell(PEMFC). A PtCo/MWNTs electrocatalyst with a Pt:Co atomic ratio of 79:21 was synthesized and applied to a cathode of PEMFC. The structure and morphology of the synthesized PtCo/MWNTs electrocatalysts were characterized by X-ray diffraction and transmission electron microscopy. As a result of the X-ray studies, the crystal structure of a PtCo particle was determined to be a face-centered cubic(FCC) that was the same as the platinum structure. The particle size of PtCo in PtCo/MWNTs and Pt in Pt/C were 2.0 nm and 2.7 nm, respectively, which were calculated by Scherrer's formula from X-ray diffraction data. As a result we concluded that the specific surface activity of PtCo/MWNTs is superior to Pt/C's activity because of its smaller particle size. From the electrochemical impedance measurement, the membrane electrode assembly(MEA) fabricated with PtCo/MWNTs showed smaller anodic and cathodic activation losses than the MEA with Pt/C, although ohmic loss was the same as Pt/C. Finally, from the evaluation of cyclic voltammetry(CV), the unit cell using PtCo/MWNTs as the cathode electrocatalyst showed slightly higher fuel cell performance than the cell with a commercial Pt/C electrocatalyst.

탄소나노 튜브위에 성장된 Pd 및 Pt 나노 입자의 제조 및 특성 (Synthesis and Property of Carbon Nanotube-Supported Pd and Pt Nanoparticles)

  • 김형균;이임렬
    • 한국재료학회지
    • /
    • 제19권4호
    • /
    • pp.192-197
    • /
    • 2009
  • Carbon nanotubes (CNT) were used as a catalyst support where catalytically active Pd and Pt metal particles decorated the outside of the external CNT walls. In this study, Pd and Pt nanoparticles supported on $HNO_3$-treated CNT were prepared by microwave-assisted heating of the polyol process using $PdCl_2$ and $H_2PtCl_6{\codt}6H_2O$ precursors, respectively, and were then characterized by SEM, TEM, and Raman. Raman spectroscopy showed that the acid treated CNT had a higher intensity ratio of $I_D/I_G$ compared to that of non-treated CNT, indicating the formation of defects or functional groups on CNT after chemical oxidation. Microwave irradiation for total two minutes resulted in the formation of Pd and Pt nanoparticles on the acid treated CNT. The sizes of Pd and Pt nanoparticles were found to be less than 10 nm and 3 nm, respectively. Furthermore, the $SnO_2$ films doped with CNT decorated by Pd and Pt nanoparticles were prepared, and then the $NO_2$ gas response of these sensor films was evaluated under $1{\sim}5\;ppm$ $NO_2$ concentration at $200^{\circ}C$. It was found that the sensing property of the $SnO_2$ film sensor on $NO_2$ gas was greatly improved by the addition of CNT-supported Pd and Pt nanoparticles.

탄소지지체의 화학적 변형에 따른 연료전지용 백금-루테늄 촉매의 전기화학적 활성의 영향 (Effect of Chemical Modification of Carbon Supports on Electrochemical Activities for Pt-Ru Catalysts of Fuel Cells)

  • 김병주;박수진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.94.1-94.1
    • /
    • 2011
  • In this work, ordered mesoporous carbons (OMCs) were prepared by the conventional templating method using mesoporous silica (SBA-15) for Pt-Ru catalyst supports in fuel cells. The influence of surface modification on carbon supports on the electrochemical activities of Pt-Ru/OMCs was investigated with different pH. The neutral-treated OMCs (N-OMCs), base-treated OMCs (B-OMCs), and acid-treated OMCs (A-OMCs) were prepared by treating OMCs with 2 M $C_6H_6$, 2 M KOH, and 2 M $H_3PO_4$, respectively. The surface characteristic of the carbon supports were determined X-ray photoelectron spectroscopy (XPS). The electrochemical activities of the Pt-Ru catalysts had been enhanced when the OMCs supports were treated by basic or neutral agents, while the electrochemical activities had been decayed for the A-OMCs supported Pt-Ru.

  • PDF

Preparation and Electroactivities of Carbon Nanotubes-supported Metal Catalyst Electrodes Prepared by a Potential Cycling

  • Kim, Seok;Jung, Yong-Ju;Park, Soo-Jin
    • Carbon letters
    • /
    • 제10권3호
    • /
    • pp.213-216
    • /
    • 2009
  • The electrochemical deposition of Pt nanoparticles on carbon nanotubes (CNTs) supports and their catalytic activities for methanol electro-oxidation were investigated. Pt catalysts of 4~12 nm average crystalline size were grown on supports by potential cycling methods. Electro-plating of 12 min time by potential cycling method was sufficient to obtain small crystalline size 4.5 nm particles, showing a good electrochemical activity. The catalysts' loading contents were enhanced by increasing the deposition time. The crystalline sizes and morphology of the Pt/support catalysts were evaluated using X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The electrochemical behaviors of the Pt/support catalysts were investigated according to their characteristic current-potential curves in a methanol solution. In the result, the electrochemical activity increased with increased plating time, reaching the maximum at 12 min, and then decreased. The enhanced electroactivity for catalysts was correlated to the crystalline size and dispersion state of the catalysts.

탄소계 복합담지체에 담지된 고내구성 고분자전해질 연료전지용 백금촉매 (Highly Durable Pt catalyst Supported on the Hybrid Carbon Materials for Polymer Electrolyte Membrane Fuel Cell)

  • 박향진;허승현
    • 전기화학회지
    • /
    • 제17권3호
    • /
    • pp.201-208
    • /
    • 2014
  • 본 연구에서는 산화그래핀과 카본블랙의 혼합담체를 이용하여 내구성이 향상된 백금촉매를 폴리올법으로 제조하였다. 삼전극 순환전압전류법을 이용한 전기화학성능 측정결과 적절한 비율로 조절된 혼합담지체에 백금을 담지시켰을 경우 초기 성능 감소없이 장기내구성이 향상되는 것으로 나타났다. 또한 회전원판전극을 이용하여 산소환원반응을 수행한 결과 혼합담체에 담지된 백금촉매가 카본블랙 단일담체에 담지된 백금촉매보다 우수한 고유활성값을 나타내었다.

Nano-structured Carbon Support for Pt/C Anode Catalyst in Direct Methanol Fuel Cell

  • Choi Jae-Sik;Kwon Heock-Hoi;Chung Won Seob;Lee Ho-In
    • 한국분말재료학회지
    • /
    • 제12권2호
    • /
    • pp.117-121
    • /
    • 2005
  • Platinum catalysts for the DMFC (Direct Methanol Fuel Cell) were impregnated on several carbon supports and their catalytic activities were evaluated with cyclic voltammograms of methanol electro-oxidation. To increase the activities of the Pt/C catalyst, carbon supports with high electric conductivity such as mesoporous carbon, carbon nanofiber, and carbon nanotube were employed. The Pt/e-CNF (etched carbon nanofiber) catalyst showed higher maximum current density of $70 mA cm^{-2}$ and lower on-set voltage of 0.54 V vs. NHE than the Pt/Vulcan XC-72 in methanol oxidation. Although the carbon named by CNT (carbon nanotube) series turned out to have larger BET surface area than the carbon named by CNF (carbon nanofiber) series, the Pt catalysts supported on the CNT series were less active than those on the CNF series due to their lower electric conductivity and lower availability of pores for Pt loading. Considering that the BET surface area and electric conductivity of the e-CNF were similar to those of the Vulcan XC-72, smaller Pt particle size of the Pt/e-CNF catalyst and stronger metal-support interaction were believed to be the main reason for its higher catalytic activity.