• Title/Summary/Keyword: Pt nanotube

Search Result 43, Processing Time 0.034 seconds

Transparent Counter Electrode for Quantum Dot-Sensitized Solar Cells with Nanotube Electrodes (나노튜브 전극 기반 양자점 감응 태양전지 구현을 위한 투명한 상대전극)

  • Kim, Jae-Yup
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • Anodic oxidized $TiO_2$ nanotube arrays are promising materials for application in photoelectrochemical solar cells as the photoanode, because of their attractive properties including slow electron recombination rate, superior light scattering, and smooth electrolyte diffusion. However, because of the opacity of these nanotube electrodes, the back-side illumination is inevitable for the application in solar cells. Therefore, for the fabrication of solar cells with the anodic oxidized nanotube electrodes, it is required to develop efficient and transparent counter electrodes. Here, we demonstrate quantum dot-sensitized solar cells (QDSCs) based on the nanotube photoanode and transparent counter electrodes. The transparent counter electrodes based on Pt electrocatalysts were prepared by a simple thermal decomposition methods. The photovoltaic performances of QDSCs with nanotube photoanode were tested and optimized depending on the concentration of Pt precursor solutions for the preparation of counter electrodes.

Anodic Stripping Voltammetric Detection of Arsenic(III) at Platinum-Iron(III) Nanoparticle Modified Carbon Nanotube on Glassy Carbon Electrode

  • Shin, Seung-Hyun;Hong, Hun-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3077-3083
    • /
    • 2010
  • The electrochemical detection of As(III) was investigated on a platinum-iron(III) nanoparticles modified multiwalled carbon nanotube on glassy carbon electrode(nanoPt-Fe(III)/MWCNT/GCE) in 0.1 M $H_2SO_4$. The nanoPt-Fe(III)/MWCNT/GCE was prepared via continuous potential cycling in the range from -0.8 to 0.7 V (vs. Ag/AgCl), in 0.1 M KCl solution containing 0.9 mM $K_2PtCl_6$ and 0.6 mM $FeCl_3$. The Pt nanoparticles and iron oxide were co-electrodeposited into the MWCNT-Nafion composite film on GCE. The resulting electrode was examined by cyclic voltammetry (CV), scanning electron microscopy (SEM), and anodic stripping voltammetry (ASV). For the detection of As(III), the nanoPt-Fe(III)/MWCNT/GCE showed low detection limit of 10 nM (0.75 ppb) and high sensitivity of $4.76\;{\mu}A{\mu}M^{-1}$, while the World Health Organization's guideline value of arsenic for drinking water is 10 ppb. It is worth to note that the electrode presents no interference from copper ion, which is the most serious interfering species in arsenic detection.

Comparison of Catalytic Activity for Methanol Electrooxidation Between Pt/PPy/CNT and Pt/C

  • Lee, C.G.;Baek, J.S.;Seo, D.J.;Park, J.H.;Chun, K.Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.240-245
    • /
    • 2010
  • This work explored the catalytic effect of Pt in multi-wall carbon nanotube and poly-pyrrole conductive polymer electrocatalysts (Pt/PPy/MWCNT). A home-made Pt/PPy/MWCNT catalyst was first evaluated by comparing its electrochemical active surface area (ESA) with E-Tek commercial catalysts by cyclic voltammetry in $H_2SO_4$ solution. Then, the methanol oxidation currents of Pt/PPy/MWCNT and the hydrogen peaks in $H_2SO_4$ solution were serially measured with microporous electrode. This provided the current density of methanol oxidation based on the ESA, allowing a quantitative comparison of catalytic activity. The current densities were also measured for Pt/C catalysts of E-Tek and Tanaka Precious Metal Co. The current densities for the different catalysts were similar, implying that catalytic activity depended directly on the ESA rather than charge transfer or electronic conductivity.

The development of PEMFC cathode using polyol method with directly grown CNT on carbon paper (Carbon paper에 직접적으로 생산한 CNT를 polyol 방법으로 Pt deposition하여 PEMFC cathode 개발)

  • Ok, Jinhee;Altalsukh, Dorjgotov;Rhee, Junki;Park, Sangsun;Shul, Yonggun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.84.1-84.1
    • /
    • 2010
  • Since the discovery of the carbon nanotube(CNTs), they have attracted much attention because of unique properties that may impact many fields of science and technology. The considerable properties of CNTs include high surface area, outstanding thermal, electrical conductivity and mechanical stability. However, uniform deposition of Pt nanoparticles on carbon surface remains inaccessible territory because of the inert carbon surface. In this study, we prepared directly oriented CNTs on carbon paper as a catalyst support in cathode electrode. carbon surface was functionalized using aryl diazonium salt for increasing adhesion of Ni particles which is precursor for growing CNTs. For fabricate electrode, CNTs on carbon paper were grown by chemical vapor deposition using Ni catalyst and Pt nanoparticles were deposited on CNTs oriented carbon paper by polyol method. The performance was measured using Proton electrolyte Membrane Fuel Cell(PEMFC). The structure and morphology of the Pt nanoparticles on CNTs were characterized by Scanning electron Microscopy(SEM) and Transmission electron Microscopy (TEM). The average diameter of Pt nanoparticles was 3nm.

  • PDF

Room Temperature Hydrogen Gas Sensor Based on Carbon Nanotube Yarn (상온감지 가능한 탄소나노튜브 방적사 기반의 수소 감지 센서)

  • Kim, Jae Keon;Lee, Junyeop;Kong, Seong Ho;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.132-136
    • /
    • 2018
  • We report the development of a room-temperature hydrogen ($H_2$) gas sensor based on carbon nanotubes (CNT) yarn. To detect $H_2$ gas in room temperature, a highly ordered CNT yarn was placed on a substrate from a spin-capable CNT forest, followed by the deposition of a platinum (Pt) layer on surface of the CNT yarn. To examine the effect of the Pt-layer on the response of the CNT sensor, a comparative sensing performance was characterized on both the Pt deposited and non-deposited CNT yarn at room temperature. The Pt-CNT yarn yielded high response, whereas the non-deposited CNT yarn showed negligible response for $H_2$ detection at room temperature. Pt is a reliable and efficient catalyst that can substantially improve the detection of $H_2$ gas by chemical sensitization via a "spillover" effect. It can be efficiently utilized to increase the sensitivity and selectivity as well as to obtain fast response and recovery times.

Effect of Dispersion Control of Multi-walled Carbon Nanotube in High Filler Content Nano-composite Paste for the Fabrication of Counter Electrode in Dye-sensitized Solar Cell (다중벽 탄소 나노튜브 기반 고충전 나노복합 페이스트를 이용한 염료 감응 태양 전지용 상대 전극의 제조에 있어서 분산 제어의 효과)

  • Park, So Hyun;Hong, Sung Chul
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.470-477
    • /
    • 2013
  • Multi-walled carbon nanotube (MWCNT) based nano-composite pastes having a high filler content are prepared for the facile fabrication of a counter electrode (CE) of dye-sensitized solar cell (DSSC). A polystyrene-based functional block copolymer is prepared through a controlled "living" radical polymerization technique, affording a surface modifier for the dispersion control of MWCNT in the paste. Physical dispersion through a ball-milling method additionally confirms the importance of the dispersion control, providing DSSC with enhanced processibility and improved solar-to-electricity energy conversion efficiency (${\eta}$) values. The performances of the DSSCs are further improved through the incorporation of minor amount of platinum (Pt) nanoparticles into the MWCNT pastes. The DSSC with the Pt/MWCNT hybrid CE exhibits very high ${\eta}$ values, which is superior to that of DSSC with the standard Pt CE.

Carbon Nanotube-based Nanohybrid Materials as Counter Electrode for Highly Efficient Dye-sensitized Solar Cells (고효율 염료감응형 태양전지를 위한 탄소나노튜브 기반 나노 하이브리드 상대전극)

  • Kim, Ji-Soo;Sim, Eun-Ju;Dao, Van-Duong;Choi, Ho-Suk
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.262-267
    • /
    • 2016
  • In this study, we present an excellent approach for easily and uniformly immobilizing Pt, Au and bimetallic PtAu nanoparticles (NPs) on a multi-walled carbon nanotube (MWNT)-coated layer through dry plasma reduction. The NPs are stably and uniformly immobilized on the surface of MWNTs and the nanohybrid materials are applied to counter electrode (CE) of dye-sensitized solar cells (DSCs). The electrochemical properties of CEs are examined through cyclic voltammogram, electrochemical impedance spectroscopy, and Tafel measurements. As a result, both electrochemical catalytic activity and electrical conductivity are highest for PtAu/MWNT electrode. The DSC employing PtAu/MWNT CE exhibits power conversion efficiency of 7.9%. The efficiency is better than those of devices with MWNT (2.6%), AuNP/MWNT (2.7%) and PtNP/MWNT (7.5%) CEs.

Nano-structured Carbon Support for Pt/C Anode Catalyst in Direct Methanol Fuel Cell

  • Choi Jae-Sik;Kwon Heock-Hoi;Chung Won Seob;Lee Ho-In
    • Journal of Powder Materials
    • /
    • v.12 no.2 s.49
    • /
    • pp.117-121
    • /
    • 2005
  • Platinum catalysts for the DMFC (Direct Methanol Fuel Cell) were impregnated on several carbon supports and their catalytic activities were evaluated with cyclic voltammograms of methanol electro-oxidation. To increase the activities of the Pt/C catalyst, carbon supports with high electric conductivity such as mesoporous carbon, carbon nanofiber, and carbon nanotube were employed. The Pt/e-CNF (etched carbon nanofiber) catalyst showed higher maximum current density of $70 mA cm^{-2}$ and lower on-set voltage of 0.54 V vs. NHE than the Pt/Vulcan XC-72 in methanol oxidation. Although the carbon named by CNT (carbon nanotube) series turned out to have larger BET surface area than the carbon named by CNF (carbon nanofiber) series, the Pt catalysts supported on the CNT series were less active than those on the CNF series due to their lower electric conductivity and lower availability of pores for Pt loading. Considering that the BET surface area and electric conductivity of the e-CNF were similar to those of the Vulcan XC-72, smaller Pt particle size of the Pt/e-CNF catalyst and stronger metal-support interaction were believed to be the main reason for its higher catalytic activity.

Pt Coating on Flame-Generated Carbon Particles (화염법을 이용한 Pt/C 촉매 제조)

  • Choi, In-Dae;Lee, Dong-Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.116-123
    • /
    • 2009
  • Carbon black, activated carbon and carbon nanotube have been used as supporting materials for precious metal catalysts used in fuel cell electrodes. One-step flame synthesis method is used to coat 2-5nm Pt dots on flame-generated carbon particles. By adjusting flame temperature, gas flow rates and resident time of particles in flame, we can obtain Pt/C nano catalyst-support composite particles. Additional injection of hydrogen gas facilitates pyrolysis of Pt precursor in flame. The size of as-incepted Pt dots increases along the flame due to longer resident time and sintering in high temperature flame. Surface coverage and dispersion of the Pt dots is varied at different sampling heights and confirmed by Transmission electron microscopy (TEM), Energy-dispersive spectra (EDS) and X-ray diffraction (XRD). Crystalinity and surface bonding groups of carbon are investigated through X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.