• Title/Summary/Keyword: Pt electrode

Search Result 719, Processing Time 0.033 seconds

Electrical Propeties of Supercapacitor using Polyaniline and Polythiophene (Polyaniline과 Polythiophene을 사용한 Supercapacitor의 전기적 특성)

  • 강광우;김명산;김종욱;구할본
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.9
    • /
    • pp.764-769
    • /
    • 2000
  • The purpose of this study is to research and develop conducting polymer(CP) composite electrode for supercapacitor. Supercapactior cell of CP composite electrode with 1M LiClO$_4$/PC brings out good capacitor performance below 4V. The radius of semicircle of CP composite cell with PAn composite electrode adding 15Wt% SP270(PAnS15) and PT composite electrode adding 50%wt% SP270(PTS50) was absolutely small. The total resistance of supercapacitor cell mainly depended on internal resistance of the electrode. The discharge capacitance of supercapacitor cell with PTS50(+)/PAnS15(-) in 1st and 20th cycles was 38F/g and 28F/g at current density of 1mA/$\textrm{cm}^2$, respectively.

  • PDF

Electrical Properties of Supercapacitor with Polyaniline and Polythiophene (Polyaniline과 Polythiophene을 사용한 supercapaccitor의 전기적 특성)

  • 강광우;김종욱;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.487-490
    • /
    • 2000
  • The purpose of this study is to research and develop conducting polymer(CP) composite electrode for supercapacitor. Electrochemical capacitor(supercapacitor) cell of CP composite electrode with 1M LiClO$_4$PC bring out good capacitor performance below 4V. The radius of semicircle of CP composite cell with PAn composite electrode adding l5wt%SP270(PAnS15) and PT composite electrode adding 50wt%SP270 (PTS50) was absolutely small. The total resistance of supercapacitor cell mainly depended on internal resistance of the electrode. The discharge capacitance of supercapacitor cell with PTS50(+)/PAnS15(-) in 1st and 20th cycles was 38F/g and 28F/g at current density of 1mA/cm$^2$. Supercapacitor cell with PTS50(+)/PAnS15(-) showed good capacitance and stability with cycling.

  • PDF

Porous silicon-based chemical and biosensors (다공질 실리콘 구조를 이용한 화학 및 바이오 센서)

  • Kim, Yun-Ho;Park, Eun-Jin;Choi, Woo-Seok;Hong, Suk-In;Min, Nam-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2410-2412
    • /
    • 2005
  • In this study, two types of PS substrate were fabricated for sensing of chemical and biological substances. For sensing of the humidity and chemical analyzes such as $CH_3OH$ or $C_2H_5OH$, PS layers are prepared by photoelectrochemical etching of silicon wafer in aqueous hydrofluoric acid solution. To evaluate their sensitivity, we measured the resistance variation of the PS diaphragm. As the amplitude of applied voltage increases from 2 to 6Vpp at constant frequency of 5kHz, the resistance variation for humidity sensor rises from 376.3 to $784.8{\Omega}$/%RH. And the sensitivities for $CH_3OH$ and $C_2H_5OH$ were 0.068 uA/% and 0.212 uA/%, respectively. For biological sensing application, amperometric urea sensors were fabricated based on porous silicon(PS), and planar silicon(PLS) electrode substrates by the electrochemical methods. Pt thin film was sputtered on these substrates which were previously formed by electrochemical anodization. Poly (3-methylthiophene) (P3MT) were used for electron transfer matrix between urease(Urs) and the electrode phase, and Urs also was by electrochemically immobilized. Effective working area of these electrodes was determined for the first time by using $Fe(CN)_6^{3-}/Fe(CN)_6^{4-}$ redox couple in which nearly reversible cyclic voltammograms were obtained. The $i_p$ vs $v^{1/2}$ plots show that effective working electrode area of the PS-based Pt thin film electrode was 1.6 times larger than the PLS-based one and we can readily expect the enlarged surface area of PS electrode would result in increased sensitivity by ca. 1.6 times. Actually, amperometric sensitivity of the Urs/P3MT/Pt/PS electrode was ca 0.91uA/$mM{\cdot}cm^2$, and that of the Urs/P3MT/Pt/PLS electrode was ca. 0.91uA/$mM{\cdot}cm^2$ in a linear range of 1mmol/L to 100mmol/L urea concentrations

  • PDF

Effects of Deposition Method of Thermally Decomposed Platinum Counter Electrodes on the Performance of Dye-Sensitized Solar Cells (염료 감응형 태양전지 효율에 미치는 백금 상대 전극 제조공정의 영향)

  • SEO, HYUN WOO;BAEK, HYUN DUK;KIM, DONG MIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.63-69
    • /
    • 2017
  • In this work, two different platinum (Pt) counter electrodes have been prepared by spin coating a Pt solution and screen printing a Pt paste on fluorine doped tin oxide (FTO) glass substrate followed by sintering at $380^{\circ}C$ for 30 min. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) analyses of the Pt electrodes showed that the spin coated electrode was catalytically more active than the screen printed electrode. The above result agrees well with the surface morphology of the electrodes studied by atomic force microscopy (AFM) and the photovoltaic performance of the dye-sensitized solar cells (DSSCs) fabricated with the Pt electrodes. Moreover, calculation of current density-voltage (j-V) curves according to diode model with the parameters obtained from the experimental j-V curves and the EIS data of the DSSCs provided a quantitative insight about how the catalytic activity of the counter electrodes affected the photovoltaic performance of the cells. Even though the experimental situations involved in this work are trivial, the method of analyses outlined here gives a strong insight about how the catalytic activity of a counter electrode affects the photovoltaic performance of a DSSC. This work, also, demonstrates how the photovoltaic performance of DSSCs can be improved by tuning the performance of counter electrode materials.

Performance Charateristics of Direct Borohydrides Fuel Cell with Novel Catalyst (귀금속 촉매를 사용한 직접 보로하이드라이드 연료전지의 특성 연구)

  • Jung, M.K.;Shin, D.R.;Seol, Y.K.;Jung, D.H.
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.1
    • /
    • pp.6-11
    • /
    • 2005
  • Direct borohydrides fuel cell (DBFC) was emerged to complement the problem of DMFC's low performance and methanol crossover to the cathode and to apply the fuel cell to portable and mobile devices. In this study, the characteristics of novel catalysts was tested to establish the electrode preparation process of DBFC. Pt black and carbon supported-Pt by paste method were used as the cathode catalysts. Pt black, carbon supported-Au and $AB_5$ alloy were used as the anode catalysts. The characteristics of the electrodes were analyzed by XRD, SEM, EDS. The performance test of single cell using the electrodes were carried out in order to evaluate the electrode performance. In the result, the maximum power output was obtained as 366 mW/mg when using Pt/C as anode and cathode catalysts.

Effect of Electrode Degradation on the Membrane Degradation in PEMFC (PEMFC에서 전극 열화가 전해질 막 열화에 미치는 영향)

  • Song, Jinhoon;Kim, Saehoon;Ahn, Byungki;Ko, Jaijoon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.68-72
    • /
    • 2013
  • Until a recent day, degradation of PEMFC MEA (membrane and electrode assembly) has been studied, separated with membrane degradation and electrode degradation, respectively. But membrane and electrode were degraded coincidentally at real PEMFC operation condition. During simultaneous degradation, there was interaction between membrane degradation and electrode degradation. The effect of electrode degradation on membrane degradation was studied in this work. We compared membrane degradation after electrode degradation and membrane degradation without electrode degradation. I-V performance, hydrogen crossover current, fluoride emission rate (FER), impedance and TEM were measured after and before degradation of MEA. Electrode degradation reduced active area of Pt catalyst, and then radical/$H_2O_2$ evolution rate decreased on Pt. Decrease of radical/$H_2O_2$ reduced the velocity of membrane degradation.

Pyrrole Polymer Film Electrode Modified with Fullerene (Fullerene으로 수식된 피롤고분자 피막전극)

  • Cha, Seong-Keuck;Ahn, Byung-Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.1
    • /
    • pp.13-16
    • /
    • 2002
  • The type of graphite(Gr)/ppy, fullerene$(full^-)$ electrode, ppy one modified with $(full^-)$, was prepared with the cell type of Gr/5mM ppy, 1mM $(full^-)$, 0.1M $TBABF_4$, CH3CN/Pt. The values of the ionic formation rate of the it at electrode materials such as Pt/ppy, Pt, Gr and Au were $93.6,\;7.0\times10^2,\;42.6\;and\;1.3\times10^2cms^{-1}$ respectively. The admittance values of the Grippy electrode and the modified Grippy, $(full^-)$ one were five times enhanced $1.7\times10^{-3}S\;to\;8.3\times10^{-3}\;S$ and capacitance values of electrical double layer of them were 174 times increased $2.4\times10^{-6}\;F\;to\;4.2\times10^{-5}\;F$ respectively.

A Study on Electrode Structure and Characteristics of Electrode by Development of Fabrication Method of Electrode used in PAFCs (PAFC용 전극제작방법의 개선에 의한 전극구조 및 전극특성 연구)

  • Shim, Jae-Cheol;Ahn, Sang-Hyun;Yoo, Duck-Young;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.89-93
    • /
    • 1998
  • To increase performance of electrodes used in PAFC the new fabrication method was introduced and its characteristics were investigated. In the case of traditional method, electrodes show low performance because of dead catalysts. So new process was investigated to increase the utilization of Pt catalyst. After preparing PTFE/C slurry and Pt/C powder respectively, they were mixed at the ratio of 4:6, 5:5, 6:4, 7:3, 8:2, 9:1 and electrodes were fabricated. In this case of [PTFE/C(6/4):Pt/C(1/9)=5:5], the performance of electrode, $310mA/cm^2$ at 0.7V, was most excellent.

  • PDF

Synthesis of Pt-Sn/Carbon Electrodes by Reduction Method for Direct Methanol Fuel Cell (환원법에 의한 직접 메탄올 연료전지(DMFC)용 Pt-Sn/Carbon 전극제조)

  • Jung, So-Mi;Shin, Ju-Kyung;Kim, Kwan-Sung;Baeck, Sung-Hyeon;Tak, Yong-Sug
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.537-541
    • /
    • 2010
  • Pt-Sn with various ratios was supported on carbon black after pretreatment in an acidic solution by a reduction method. The Pt/Sn ratio was controlled by varying the concentration of each component in the solution, and the influence of the composition on the electrocatalytic activities was investigated. The crystallinity of the synthesized materials was investigated by XRD (X-ray Diffraction), and the oxidation states of both the platinum and tin were determined by XPS (X-ray Photoelectron Spectroscopy). SEM (Scanning Electron Microscopy)-EDS (Energy Dispersive Spectroscopy) was utilized to examine the morphology and composition of the synthesized electrode, and the particle size of the Pt-Sn was analyzed by TEM (Transmission Electron Microscopy). The electrocatalytic activity for oxygen reduction was evaluated in a 0.5 M $H_2SO_4$ solution using a rotating disk electrode system. The activity and stability were found to be strongly dependent on the electrode composition (Pt/Sn ratio). The catalytic activity and stability for methanol oxidation were also measured using cyclic voltammetry (CV) in a mixture of 0.5 M $H_2SO_4$ and 0.5 M $CH_3OH$ aqueous solution. The addition of proper amount of Sn was found to significantly improve both catalytic activity and stability for methanol oxidation.