• Title/Summary/Keyword: Pt/Ti electrode

Search Result 261, Processing Time 0.028 seconds

Characteristics of Ti Platinization for Fabrication Sn-modified Platinized Ti Electrode (Sn-modified Platinized Ti 전극 제조를 위한 Ti의 백금 도금 특성)

  • Kim, Kwang-Wook;Kim, Seong-Min;Lee, Eil-Hee
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.124-132
    • /
    • 2007
  • This work investigated a fabrication way of stable platinized Ti electrode and evaluated the electrochemical characteristics of the Sn-modified platinized Ti electrode in nitrate solution. A Pt electro-plating way to form some open special clearances within the Pt coating layer on etched Ti substrate was very important to remove effectively the residual contaminate due to plating solution out of the fabricated electrode surface and to maximize the actual electrode surface area contacting solution. Both boiling and electro-cleaning processes of the fabricated electrode was essential to obtain a stable platinized-Pt electrode with reproducible and stable surface property which was necessary for the correct evaluation of Sn coverage on the electrode. The electro-cleaning caused a morphology change of the platinized Ti electrode surface with some downy hair-like polyps formed during the deposition disappearing, which made the electrode stable. The Sn-modified platinized Ti electrode in this work showed the best electro-activity for nitrate reduction, when it was fabricated through the Pt electro-plating of about 30 minutes.

Effects of Heterostructure Electrodes on the Reliability of Ferroelectric PZT Thin Film (강유전체 PZT박막의 신뢰도에 미치는 헤테로구조 전극의 영향에 대한 연구)

  • Lee, Byoung-Soo;Lee, Bok-Hee;Lee, Duch-Chool
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.1
    • /
    • pp.14-19
    • /
    • 2003
  • The effect of the Pt electrode and the $Pt-IrO_2$ hybrid electrode on the performance of ferroelectric device was investigated. The modified Pt thin films with non-columnar structure significantly reduced the oxidation of TiN diffusion barrier layer, which rendered it possible to incorporate the simple stacked structure of Pt/TiN/poly-Si plug. When a $Pt-IrO_2$ hybrid electrode is applied, PZT thin film properties are influenced by the thickness and the partial coverage of the electrode layers. The optimized $Pt-IrO_2$ hybrid electrode significantly enhanced the fatigue properties of the PZT thin film with minimal leakage current.

Electrochemical Degradation of Phenol and 2-Chlorophenol Using Pt/Ti and Boron-Doped Diamond Electrodes

  • Yoon, Jang-Hee;Shim, Yoon-Bo;Lee, Byoung-Seob;Choi, Se-Yong;Won, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2274-2278
    • /
    • 2012
  • To test the efficiency of the BDD electrode for complete mineralization of organic wastewater, phenol and 2-chlorophenol (2-CP) were treated electrochemically with both an active Pt/Ti electrode and a nonactive boron doped diamond (BDD) electrode, respectively, in neutral aqueous medium. Aqueous solutions of both phenol and 2-chlorophenol were treated electrochemically using an in-house fabricated flow through electrochemical cell (FTEC). The experimental variables included current input, treatment time, and the flow rate of the solutions. Depending on the magnitude of the applied current and reaction time, the compounds were either completely degraded or partially oxidized to other intermediates. Removal efficiencies reached as high as 93.2% and 94.8% both at the Pt/Ti electrode and BDD electrode, respectively, at an applied current of 200 mA for a 3.0 hr reaction and a flow rate of 4 mL/min. The BDD electrode was much more efficient for the complete mineralization of phenol and 2-chlorophenol than the Pt/Ti electrode.

Effects of Heterostructure Electrodes on the Reliability of Ferroelectric PZT Thin Films

  • Kim, Seung-Hyun;Woo, Hyun-Jung;Koo, Chang-Young;Yang, Jeong-Seung;Ha, Su-Min;Park, Dong-Yeon;Lee, Dong-Su;Ha, Jo-Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.341-345
    • /
    • 2002
  • The effect of the Pt electrode and the $Pt-IrO_2$ hybrid electrode on the performance of ferroelectric device was investigated. The modified Pt thin films with non-columnar structure significantly reduced the oxidation of TiN diffusion barrier layer, which rendered it possible to incorporate the simple stacked structure of Pt/TiN/poly-Si plug. When a $Pt-IrO_2$ hybrid electrode is applied, PZT thin film properties are influenced by the thickness and the partial coverage of the electrode layers. The optimized $Pt-IrO_2$ hybrid electrode significantly enhanced the fatigue properties with minimal leakage current.

Resistance Switching Characteristics of Metal/TaOx/Pt with Oxidation degree of metal electrodes

  • Na, Hee-Do;Kim, Jong-Gi;Sohn, Hyun-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.187-187
    • /
    • 2010
  • In this study, we investigated the effect of electrodes on resistance switching of TaOx film. Pt, Ni, TiN, Ti and Al metal electrodes having the different oxidation degree were deposited on TaOx/Pt stack. Unipolar resistance switching behavior in Pt or Ni/TaOx/Pt MIM stacks was investigated, but bipolar resistance switching behavior in TiN, Ti or Al /TaOx/Pt MIM stacks was shown. We investigated that the voltage dependence of capacitance was decreased with higher oxidation degree of metal electrodes. Through the C-V results, we expected that linearity ($\alpha$) and quadratic ($\beta$) coefficient was reduced with an increase of interface layer between top electrode and Tantalum oxide. Transmission Electron Microscope (TEM) images depicted the thickness of interface layer formed with different oxidation degree of top electrode. Unipolar resistance switching behavior shown in lower oxidation degree of top electrode was expected to be generated by the formation of the conducting path in TaOx film. But redox reaction in interface between top electrode and Tantalum oxide may play an important role on bipolar resistance switching behavior exhibited in higher oxidation degree of top electrode. We expected that the resistance switching characteristics were determined by oxidation degree of metal electrodes.

  • PDF

Crystallographic Relationships of (Ba, Sr) $TiO_3$Thin Film Prepared by Metal-Organic Chemical Vapor Deposition on (111) Textured Pt Electrode

  • Yoo, Dong-Chul;Lee, Jeong-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.11
    • /
    • pp.1126-1129
    • /
    • 2000
  • The crystallographic orientations of $Ba_{0.6}$S $r_{0.4}$Ti $O_3$(BST) thin film deposited by a metal-organic chemical vapor deposition on (111) textured Pt electrode were studied with a transmission electron microscopy. The fully crystallized BST thin film (50nm) has (100) and (110) preferred orientations. A high resolution transmission electron microscopy study has revealed the crystallographic orientation relationships between BST thin film and Pt electrode. These relationships explained the preferred orientation of BST film on (111) textured Pt electrode. With these results, we could represent the atomic arrangement at the BST/Pt interface.e.e.

  • PDF

The characteristics of dye-sensitized solar cells using carbon nanotube in working and counter electrodes (작업전극과 상대전극에 탄소나노튜브를 이용한 염료감응 태양전지의 특성연구)

  • Kim, Bora;Song, Suil;Lee, Hak Soo;Cho, Namjun
    • Analytical Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.308-313
    • /
    • 2014
  • The effect of electrochemical characteristics of dye-sensitized solar cells (DSSC) upon employing multi-wall carbon nanotube (MWCNT) on both working electrode and counter electrode were examined with using EIS, J-V curves and UV-Vis absorption spectrometry. When 0.1 wt% of MWCNT was employed in the $TiO_2$-MWCNT composit on working electrode, the energy conversion efficiency increased about 12.5% compared to the $TiO_2$ only working electrode. The higher light conversion efficiency may attribut to the high electrical conductivity of MWCNT in $TiO_2$-MWCNT composite which improves the electron transport in the working electrode. However, higher amount of MWCNT than 0.1 wt% in the $TiO_2$-MWCNT composite decreases the light conversion efficiency, which is mainly ascribed to the decreased transmittance of light by MWCNT and to the decreased adsorption of dye onto $TiO_2$. The MWCNT employed counter electrode exhibited much lower light conversion efficiency of DSSC than the Pt-counter electrode, while the MWCNT-Pt counter electrode showed similar in light conversion efficiency to that of Pt-counter electrode.

A Study on the Saturation of Grain Size in Pb(Zr, Ti)$O_3$ Thin Films (Pb(Zr, Ti)$O_3$ 박막에서 결정립 크기 포화 현상에 관한 연구)

  • 이장식;김찬수;주승기
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.6
    • /
    • pp.530-536
    • /
    • 2000
  • During the grain growth of the PZT thin films by selective nucleation method using PZT seed, it was found that the grain size was saturated with the annealing temperature. The saturation of grain size was analyzed by the interfacial energy which appeared during the crystallization. The factors affecting the saturation of grain size were found to be the interfacial energy between perovskite phase and pyrochlore phase, and PZT thin film and the bottom Pt electrode. When the ion damage was introduced to the grain-size saturated PZT thin films, further lateral growth was observed. Pt bottom electrode thickness was changed to control the interfacial energy between the PZT thin film and the Pt bottom electrode. When Pt thickness was increased, the grain size was also increased, because the lattice parameter of Pt films was increased with the thickness of the Pt films. The incubation time of nucleation was increased with the amount of the ion damage on the Pt films.

  • PDF

Effects of Bottom Electrode to Dielectric and Electrical Properties of MOD Derived Ferroelectric SBT Thin Films (MOD 법으로 제조한 강유전성 SBT 박막에서 하부전극이 유전 및 전기적 특성에 미치는 영향)

  • 김태훈;송석표;김병호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.8
    • /
    • pp.694-699
    • /
    • 2000
  • S $r_{0.9}$/B $i_{2.1}$/T $a_{2}$/ $O_{9}$ solutions was synthesized by MOD (metalorganic decomposition) method. SBT thin films with 2000$\AA$ thickness were prepared on Ir $O_2$/ $SiO_2$/Si and Pt/Ti/ $SiO_2$/Si substrates using the spin coating process and then investigated the dielectric and electrical properties of them. In the case of using Ir $O_2$bottom electrode the hysteresis loop was saturated at lower temperature than Pt/Ti electrode but the breakdown phenomenon was occurred at low voltage because of the rough surface morphology and porous microstructure of SBT thin films. As the results of the fatigue and imprint characteristics related to the lifetime and reliability of devices after 10$^{10}$ cycles the fatigue rates were about 10% at the Ir $O_2$and Pt/Ti bottom electrodes. Both SBT thin films with Ir $O_2$ and with Pt/Ti bottom electrodes show a slight tendency to imprint after 10$^{9}$ cycles but do not lead to a failure.e.e.

  • PDF