• Title/Summary/Keyword: Pt/C

Search Result 1,869, Processing Time 0.035 seconds

Fabrication of Pt Thin-film Type Microheater for Thermal Microsensors and Its Characteristics (열형 마이크로센서용 백금박막형 미세발열체의 제작과 그 특성)

  • 정귀상;홍석우
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.6
    • /
    • pp.509-513
    • /
    • 2000
  • The physical and electrical characteristics of MgO and Pt thin-films on it deposited by reactive sputtering and rf magnetron sputtering respectively were analyzed with annealing temperature and time by four point probe SEM and XRD. Under annealing conditions of 100$0^{\circ}C$ and 2 hr, MgO thin-film had the properties of improving Pt adhesion to SiO$_2$and insulation without chemical reaction to Pt thin-film and the sheet resistivity and the resistivity of Pt thin-film deposited on it were 0.1288 Ω/ and 12.88 $\mu$$\Omega$.cm respectively. We made Pt resistance pattern on SiO$_2$/Si substrate by life-off method and fabricated Pt thin-film type microheater for thermal microsensors by Pt-wire Pt-paste and SOG(spin-on-glass). In the temperature range of 25~40$0^{\circ}C$ we estimated TCR(temperature coefficient of resistance) and resistance ratio of thin-film type Pt-RTD(resistance thermometer device). We obtained TCR value of 3927 ppm/$^{\circ}C$ close to the bulk Pt value. Resistance values were varied linearly within the range of the measurement temperature. The thermal characteristics of fabricated thin-films type Pt micorheater were analyzed with Pt-RTD integrated on the same substrate. The heating temperature of Pt microheater could be up to 40$0^{\circ}C$ with 1.5 watts of the heating power.

  • PDF

Annealing effect of Schottky contact on the characteristics of 1300 V 4H-SiC SBDs (1300 V급 4H-SiC SBDs의 Contact의 특성에 미치는 열처리 효과)

  • 강수창;금병훈;도석주;제정호;신무환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.30-33
    • /
    • 1999
  • 본 연구에서는 Pt/f4-SiC Schottky barrier diodes(SBDs)의 소자 성능향상과 미세구조와의 상관관계를 규명하였다. 다른 열처리 온도구간에 따른 금속/SiC 계면의 미세구조 평가는 X-ray scattering법을 사용하여 분석하였다. 소자의 역 방향 특성은 열처리 온도가 증가함에 따라 저하되었다. As-deposited와 $850^{\circ}C$ 온도에서 열처리된 소자의 최대 항복전압은 각각 1300 V와 626 V 이었다. 그러나, 소자의 순방향 특성은 열처리 온도가 증가함에 따라 향상되었다. X-ray scattering법으로 >$650^{\circ}C$ 이상의 열처리 온도에서는 Pt/SiC 계면에서 Pt-silicides가 형성되었고, 이러한 Silicides의 형성이 Pt/SiC 계면의 평활도를 증가시킨 원인이 됨을 보였다. SBDs의 순방향 특성은 열처리 과정동안 Pt/SiC 계면에서 형성된 silicides의 결정성에 강하게 의존함을 알 수 있었다.

  • PDF

SOx Sensor Using NASICON Solid Electrolyte (NASICON 고체 전해질을 사용한 SOx 가스 감지센서)

  • Choi, Soon-Don;Lee, Kwang-Beum
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.25-34
    • /
    • 1996
  • A SOx sensor using NASICON electrolyte was developed for monitoring of air pollution. The following galvanic cell with $Na_{2}SiO_{3}(Pt)$ reference electrode was assembled : Pt | $Na_{2}SiO_{3}$ | NASICON | $Na_{2}SO_{4}$ | Pt, $SO_{2}$, air $Na_{2}SO_{4}$ was used as an indicator electrode to protect NASICON electrolytes from chemical reaction with $SO_{2}$. The EMFs were measured after injecting $SO_{2}$ in the initial concentrations range of $5{\sim}95ppm$ at $400{\sim}550^{\circ}C$. The measured and calculated potentials were in good agreement above $500^{\circ}C$. However, the cells were unstable below $500^{\circ}C$, most likely due to incomplete attainment of chemical equilibrium. Response time was within 10 min. Based on the stability and response time of this cell, the NASICON solid electrolyte with $Na_{2}SiO_{3}(Pt)$ as the reference electrode and $Na_{2}SO_{4}$ (Pt)as the indicator electrode showed the possibility of a reliable, inexpensive commercial solid-state SOx sensor.

  • PDF

Effect of PVP on the Dispersity of Pt Nanoparticles and Catalytic Activity in Synthesis of Pt/C Catalysts for Fuel Cell (연료전지용 Pt/C 촉매 합성에 있어서 PVP가 Pt 나노입자의 분산 및 촉매 활성에 미치는 영향)

  • Leem, Young-Min;Park, Nam-Hee;Yu, Yeon-Tae
    • Korean Journal of Materials Research
    • /
    • v.18 no.8
    • /
    • pp.401-405
    • /
    • 2008
  • Pt-loaded carbon black for the catalyst of a PEM fuel cell was synthesized with different molar ratios of polyvinylpyrrolidone and $H_2PtCl_6$ solution to improve the dispersion of Pt nanoparticles on carbon black and decrease the size of Pt nanoparticles. From transmission electron microscopy results, Pt nanoparticles of a size of approximately 2 nm were highly dispersed when the polyvinylpyrrolidone concentration was 10mM. The electrochemical activity of the synthesized Pt/C catalysts was investigated by cyclic voltammetry, showing that the as-synthesized Pt-loaded carbon black catalyst had the best activity at a polyvinylpyrrolidone concentration of 10 mM.

Pt Catalysts Prepared via Top-down Electrochemical Approach: Synthesis Methodology and Support Effects

  • Alexandra Kuriganova;Igor Leontyev;Nikolay Leontyev;Nina Smirnova
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.345-352
    • /
    • 2024
  • The synthesis of Pt nanoparticles and catalytically active materials using the electrochemical top-down approach involves dispersing Pt electrodes in an electrolyte solution containing alkali metal cations and support material powder using an alternating pulsed current. Platinum is dispersed to form particles with a predominant crystallographic orientation of Pt(100) and a particle size of approximately 7.6±1.0 nm. The dispersed platinum particles have an insignificant content of PtOx phase (0.25±0.03 wt.%). The average formation rate was 9.7±0.5 mg cm-2 h-1. The nature of the support (carbon material, metal oxide, carbon-metal oxide hybrid) had almost no effect on the formation rate of the Pt nanoparticles as well as their crystallographic properties. Depending on the nature of the support material, Pt-containing catalytic materials obtained by the electrochemical top-down approach showed good functional performance in fuel cell technologies (Pt/C), catalytic oxidation of CO (Pt/Al2O3) and electrochemical oxidation of methanol (Pt/TiO2-C) and ethanol (Pt/SnO2-C).

Micro Heater Characteristics of Pt-Co Alloy Thin Films (Pt-Co 합금박막의 미세발열체 특성)

  • Seo, J.H.;Hong, S.W.;Noh, S.S.;Che, W.S.;Chio, Y.K.;Chung, G.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2544-2546
    • /
    • 1998
  • The electrical and physical charateristics of Pt-Co alloy thin films on $Al_2O_3$ substrate, deposited by r.f cosputtering respectively, were analyzed with thickness of thin films ($1700{\sim}10000{\AA}$) and increasing annealing temperature ($800{\sim}1000^{\circ}C$). At input power of Pt : 4.4 W/$cm^2$, Co : 6.91 W/$cm^2$, working vacuum of 10 mTorr and annealing conditions of $1000^{\circ}C$) and 60 min, the resistivity and sheet resistivity of Pt-Co thin films with thickness of $3000{\AA}$ was $15{\mu}{\Omega}{\cdot}cm$ and 0.5 ${\Omega}/{\square}$, respectively. The TCR value of Pt-Co alloy thin films was measured with various thickness of thin films and annealing conditions. The optimum TCR value of 3850 ppm/$^{\circ}C$ in temperature range($200{\sim}400^{\circ}C$) is gained under conditions $3000{\AA}$ of thin films thickness and $1000^{\circ}C$ of annealing temperature. The thermal charateristics of Pt-Co micro heaters were analysed with Pt-Co RTD integrated on the same substrate. In the analysis of characteristics of Pt-Co micro heaters, the Pt-Co micro heaters with thickness of $3000{\AA}$ and annealing temperature of $1000^{\circ}C$ had a good linearity and temperature is up to $468.2^{\circ}C$ with 2.1 watts of the heating power.

  • PDF

Synthesis and Characterization of a Series of PtRu/C Catalysts for the Electrooxidation of CO (일산화탄소 산화를 위한 PtRu/C 시리즈 촉매의 합성 및 특성 연구)

  • Lee, Seonhwa;Choi, Sung Mook;Kim, Won Bae
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.432-439
    • /
    • 2012
  • The electrocatalytic oxidation of CO was studied using carbon-supported 20 wt% PtRu (PtRu/C) catalysts, which were prepared with different Pt : Ru atomic ratios from 7 : 3 to 3 : 7 using a colloidal method combined with a freeze-drying procedure. The bimetallic PtRu/C catalysts were characterized by various physicochemical analyses, including X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). CO stripping voltammetry measurements indicated that the addition of Ru with a Pt catalyst significantly improved the electrocatalytic activity for CO electrooxidation. Among the tested catalysts, the $Pt_5Ru_5/C$ catalyst had the lowest onset potential (vs.Ag/AgCl) and the largest CO EAS. Structural modification via lattice parameter change and electronic modification in the unfilled d band states for Pt atoms may facilitate the electrooxidation of CO.

Effects of Electrode and Matrix in the PAFC Performance (전극 및 메트릭스가 인산형 연료전지의 성능에 미치는 영향)

  • Kim, Dong-Jin;Song, Rak-Hyun;Lee, Byung-Rok;Kim, Chang-Soo;Shin, Dong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1873-1875
    • /
    • 1999
  • The effects of electrode and matrix in the PAFC were investigated using AC-impedance spectroscopy. The performance of PAFC was determined by changing external electronic load. AC impedance measurement was carried out as functions of phosphoric acid impregnation temperature. operating temperature and matrix coating method using various cathodes ; 20%Pt/C, 20%Pt-Ni/C, 20%Pt-Co-Ni/C, 10%Pt-Fe-Co/C, and 20%Pt-Fe-Co/C From the analysis of measured impedance data, the interfacial resistance decreased with increasing operating temperature. and with decreasing impregnation temperature. As compared with the alloy catalysts, Pt catalyst showed a lower interfacial resistance. This consist with the cell performance.

  • PDF

C3H8 Gas Sensitivity of Pd, Pt-$SnO_2$ Gas Sensor with Varying Impregnation Method (함침 방법의 차이에 따른 Pd, Pt-$SnO_2$의 프로판 가스 감응성 변화)

  • 이종흔;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.5
    • /
    • pp.638-644
    • /
    • 1990
  • The C3H8 gas sensitivities of SnO2, Pd-SnO2, Pt-SnO2 gas sensor are looked over with the impregnation method of PdCl2, H2PtCl6 solution on SnO2. The Cl- ion due to incomplete decomposition of PdCl2 at 80$0^{\circ}C$ for 30 min decrease the C3H8 gas sensitivity of SnO2, and the sensitivity is increased by the impreganation of H2PtCl6 solution on SnO2 because of its lower decomposition temperature compared with PdCl2. The C3H8 gas sensitivities of Pd-SnO2, Pt-SnO2 impregnated slightly after 1st sintering are larger than that of pure SnO2 sensor because very small amount of Cl- ion exist in sample due to smaller amount of impregnaiton.

  • PDF

Aging Properties of SBT Thin Films Prepared by RF Magnetron Sputtering Method

  • Cho, C.N.;Kim, J.S.;Oh, Y.C.;Shin, C.G.;Choi, W.S.;Kim, C.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.474-475
    • /
    • 2007
  • The $Sr_{0.8}Bi_{2.2}Ta_2O_9$(SBT) thin films are deposited on Pt-coated electrode(Pt/$TiO_2/SiO_2$/Si) using RF magnetron sputtering method. The aging properties of SBT capacitor with top electrodes represents a favorable properties in Pt electrode. The dielectric constant and leakage current density with Pt electrode is 340 and $6.81{\times}10^{-10}\;A/cm^2$ respectively. The maximum remanent polarization and the coercive electric field with Pt electrode are $12.40{\mu}C/cm^2$ and 30kV/cm respectively.

  • PDF