• 제목/요약/키워드: Pt(200) layer

검색결과 45건 처리시간 0.026초

차단막 코팅에 의한 염료 태양전지의 전하전송효율 개선에 관한 연구 (Improvement of Charge Transfer Efficiency of Dye-sensitized Solar Cells by Blocking Layer Coatings)

  • 최우진;김광태;곽동주;성열문
    • 전기학회논문지
    • /
    • 제60권2호
    • /
    • pp.344-348
    • /
    • 2011
  • A layer of $TiO_2$ thin film less than ~200nm in thickness, as a blocking layer, was deposited by 13.56 MHz radio frequency magnetron sputtering method directly onto the anode electrode to be isolated from the electrolyte in dye-sensitized solar cells (DSCs). This is to prevent the electrons from back-transferring from the electrode to the electrolyte ($I^-/{I_3}^-$). The presented DSCs were fabricated with working electrode of F:$SnO_2$(FTO) glass coated with blocking $TiO_2$ layer, dye-attached nanoporous $TiO_2$ layer, gel electrolyte and counter electrode of Pt-deposited FTO glass. The effects of blocking layer were studied with respect to impedance and conversion efficiency of the cells. The, electrochemical impedances of DSCs using this electrode were $R_1$: 13.9, $R_2$: 15.0, $R_3$: 10.9 and $R_h$: $82{\Omega}$. The $R_2$ impedance related by electron movement from nanoporous $TiO_2$ to TCO showed lower than that of normal DSCs. The photo-conversion efficiency of prepared DSCs was 5.97% ($V_{oc}$: 0.75V, $J_{sc}$: 10.5 mA/$cm^2$, ff: 0.75) and approximately 1% higher than general DSCs sample.

유체의 정확한 온도 측정을 위하여 내부 센서를 집적한 마이크로채널 제작 (Fabrication of the Microchannel Integrated with the Inner Sensors for Accurate Measuring Fluid Temperature)

  • 박호준;임근배;손상영;송인섭;박정호
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권9호
    • /
    • pp.449-454
    • /
    • 2002
  • A rectangular straight microchannel, integrated with the resistance temperature detectors(RTDs) for temperature sensing and a micro-heater for generating the Temperature gradient along the channel, was fabricated. Its dimension is 57${\mu}{\textrm}{m}$(H)$\times$200${\mu}{\textrm}{m}$(W)$\times$48,050${\mu}{\textrm}{m}$(L), and RTDs were placed at the inner-channel wall. Si wafer was used as a substrate. For the fabrication of RTDs, 5300$\AA$ thick Pt/Ti layer was sputtered on a Pyrex glass wafer. Finally, the glass wafer was bonded with Si wafer by anodic bonding, so that the RTDs are located inside the microchannel. Temperature coefficient of resistance(TCR) values of the fabricated Pt-RTDs were 2800~2950ppm$^{\circ}C$ and the variation of TCR value In the range of O~10$0^{\circ}C$ was less than 0.3%. Therefore, it was proved that the fabricated Pt-RTDs without annealing were excellent as temperature sensors. The temperature distribution in the microchannel was investigated as a function of mass flow rate and heating power. The temperature increase rate diminished with decreasing the applied power and increasing the mass flow rate. It was confirmed from the comparison with the simulation results that the temperature measured inside the microchannel is more accurate than measuring the temperature measured at the outer wall. The proposed temperature sensing method and microchannel are expected to be useful in microfluidics researches.

멤브레인 구조를 위한 DLC 박막의 특성에 관한 연구 (A study of properties of DLC films for membrane structure)

  • 이태용;김응권;박용섭;홍병유;송준태;박영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.748-752
    • /
    • 2004
  • The Hydrogenated amorphous carbon (a-C:H) thin films are deposited to fabricate suppored layer on silicon substrate with a closed field unbalanced magnetron(CFUBM) sputtering system. This study focuses on the characteristic of Diamond like carbon (DLC) films and Pb(Zr,Ti)$O_3$ (PZT) films for membrane structure. The deposition rate and the surface roughness of DLC fims decrease with DC bias voltage. hardness is 26 GPa at -200 V. Interface of DLC/Si and Pt/DLC layers was excellent.

  • PDF

GaAs/AlGaAs HEMT소자의 제작 및 특성 (Fabrication and Characterization of GaAs/AlGaAs HEMT Device)

  • 이진희;윤형섭;강석봉;오응기;이해권;이재진;최상수;박철순;박형무
    • 전자공학회논문지A
    • /
    • 제31A권9호
    • /
    • pp.114-120
    • /
    • 1994
  • We have been successfully fabricated the low nois HEMT device with AlGaAs and GaAs structure. The epitazial layer with n-type AlgaAs and undoped GaAs was grown by molecular beam epitaxy(MBE) system. Ohmic resistivity of the ource and drain contact is below 5${\times}10^{6}{\Omega}{\cdot}cm^{2}$ by the rapid thermal annealing (RTA) process. The ideality factor of the Schottky gate is below 1.6 and the gate material was Ti/Pt/Au. The HEMTs with 0.25$\mu$m-long and 200$\mu$m-wide gates have exhibited a noise figure of 0.65dB with associated gain of 9dB at 12GHz, and a transconductance of 208mS/mm.

  • PDF

PLD 법으로 제작된 PLZT 박막의 산소압에 따른 구조 및 전기적 특성 (Oxygen Pressure Dependence of Structural and Electrical Characteristics of PLZT Thin Films Prepared by a PLD)

  • 장낙원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권8호
    • /
    • pp.927-933
    • /
    • 2006
  • The structural and electrical characteristics of PLZT thin films fabricated onto $Pt/IrO_2/Ir/Ti/SiO_2/Si$ substrates by a pulsed laser deposition were investigated to develop the high dielectric thin films for capacitor layer of semiconductor memory devices The slim region 14/50/50 PLZT thin films were fabricated by PLD and estimated the characteristics for memory application 14/50/50 PLZT thin films have crystallize into perovskite structure at the $600^{\circ}C$ deposition temperature, 200 mTorr of oxygen pressure, and 2 $J/cm^2$ of laser energy density. In this condition PLZT thin films had the dielectric constant as high as 985, storage charge density 8.17 ${\mu}C/cm^2$ and charging time 0.20 ns. Leakage current density was less than $10^{-10}A/cm^2$ up to 5 V bias voltage.

Methane Gas Sensing Properties of the Zinc Oxide Nanowhisker-derived Gas Sensor

  • Moon, Hyung-Sin;Kim, Sung-Eun;Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권2호
    • /
    • pp.106-109
    • /
    • 2012
  • A low power methane gas sensor with microheater was fabricated by silicon bulk micromachining technology. In order to heat up the sensing layer to operating temperature, a platinum (Pt) micro heater was embedded in the gas sensor. The line width and gap of the microheater was 20 ${\mu}m$ and 4.5 ${\mu}m$, respectively. Zinc oxide (ZnO) nanowhisker arrays were grown on a sensor from a ZnO seed layer using a hydrothermal method. A 200 ml aqueous solution of 0.1 mol zinc nitrate hexahydrate, 0.1 mol hexamethylenetetramine, and 0.02 mol polyethylenimine was used for growing ZnO nanowhiskers. Temperature distribution of the sensor was analyzed by infrared thermal camera. The optimum temperature for highest sensitivity was found to be $250^{\circ}C$ although relatively high (64%) sensitivity was obtained even at as low a temperature as $150^{\circ}C$. The power consumption was 72 mW at $250^{\circ}C$, and only 25 mW at $150^{\circ}C$.

SHAPE EFFECT ON PERFORMANCE OF MULTILAYER CERAMIC ACTUATOR

  • Wee, S. B.;Jeong, S. J.;Song, J. S.
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2003년도 추계학술대회 발표 논문집
    • /
    • pp.163-168
    • /
    • 2003
  • In the present study, the piezoelectricity and polarization of multilayer ceramic actuator, being designed to stack PMN-PZ-PT ceramic layers and Ag-Pd electrode layers alternatively, were investigated under a consideration of geometric factor, the volume ratio of the ceramic to the electrode layers. The actuators were fabricated by tape casting of $0.2Pb(Mg_{1/3}Nb_{2/3)O_3-0.38PbZrO_3-0,42PbTiO_3$ followed by lamination and burnout & co-firing processes. The actuators of $10\times10\times0.6~2\textrm{mm}^3$ in size were formed in a way that $60 ~ 200\mu\textrm{m}$ thick were stacked alternatively with $5\mu\textrm{m}$ thick electrode layer. Increases in polarization and electric field-induced displacement with thickness of the ceramic layer were attributed to change of $90^{\circ}$/$180^{\circ}$ domain ratio, which was affected by interlayer internal stress. The piezoelectricity and actuation behaviors were found to depend upon the volume ratio (or thickness ratio) of ceramic to electrode layers.

  • PDF

저온에서 Hydropolymer를 이용한 ZnO 나노입자 염료 감응형 태양전지 (ZnO Nanoparticle Based Dye-Sensitized Solar Cells Devices Fabricated Utilizing Hydropolymer at Low Temperature)

  • 권병욱;손동익;박동희;양정도;최원국
    • 한국재료학회지
    • /
    • 제20권9호
    • /
    • pp.483-487
    • /
    • 2010
  • To fabricate $TiO_2$ nanoparticle-based dye sensitized solar cells (DSSCs) at a low-temperature, DSSCs were fabricated using hydropolymer and ZnO nanoparticles composites for the electron transport layer around a low-temperature ($200^{\circ}C$). ZnO nanoparticle with 20 nm and 60 nm diameter were used and Pt was deposited as a counter electrode on ITO/glass using an RF magnetron sputtering. We investigate the effect of ZnO nanoparticle concentration in hydropolymer and ZnO nanoparticle solution on the photoconversion performance of the low temperature fabricated ($200^{\circ}C$) DSSCs. Using cis-bis(isothiocyanato)bis(2,20 bipyridy1-4,40 dicarboxylato) ruthenium (II) bis-tetrabutylammonium (N719) dye as a sensitizer, the corresponding device performance and photo-physical characteristics are investigated through conventional physical characterization techniques. The effect of thickness of the ZnO photoelectrode and the morphology of the ZnO nanoparticles with the variations of hydropolymer to ZnO ratio on the photoconversion performance are also investigated. The morphology of the ZnO layer after sintering was examined using a field emission scanning electron microscope (FE-SEM). 60 nm ZnO nanoparticle DSSCs showed an incident photon-to-current conversion efficiency (IPCE) value of about 7% higher than that of 20 nm ZnO nanoparticle DSSCs. The maximum parameters of the short circuit current density ($J_{sc}$), the open circuit potential ($V_{oc}$), fill factor (ff), and efficiency ($\eta$) in the 60 nm ZnO nanoparticle-based DSSC devices were 4.93 mA/$cm^2$, 0.56V, 0.40, and 1.12%, respectively.

절연층인 CeO$_2$박막의 제조 및 Pt/$SrBi_2$$Ta_2$$O_9$/$CeO_24/Si MFISFET 구조의 전기적 특성 (Preparation of CeO$_2$ Thin Films as an Insulation Layer and Electrical Properties of Pt/$SrBi_2$$Ta_2$$O_9$/$CeO_24/Si MFISFET)

  • 박상식
    • 한국재료학회지
    • /
    • 제10권12호
    • /
    • pp.807-811
    • /
    • 2000
  • MFISFET (Metal-ferroelectric-nsulator-semiconductor-field effect transistor)에의 적용을 위해 CeO$_2$와 SrBi$_2$Ta$_2$O$_{9}$ 박막을 각각 r.f. sputtering 및 pulsed laser ablation법으로 제조하였다. CeO$_2$ 박막은 증착시 스퍼터링개스비 (Ar:O$_2$)에 따른 특성을 고찰하였다. Si(100) 기판 위에 $700^{\circ}C$에서 증착된 CeO$_2$ 박막들은 (200)방향으로 우선방향성을 가지고 성장하였고 $O_2$ 개스량이 증가함에 따라 박막의 우선방향성, 결정립도 및 표면거칠기는 감소하였다. C-V특성에서는 Ar:O$_2$가 1 : 1인 조건에서 제조된 박막이 가장 양호한 특성을 보였다. 제조된 박막들의 누설전류값은 100kV/cm의 전계에서 $10^{-7}$ ~$10^{-8}$ A의 차수를 보였다. CeO$_2$/Si 기판위에 성장된 SBT는 다결정질상의 치밀한 구조를 가지고 성장을 하였다 80$0^{\circ}C$에서 열처리된 SBT박막으로 구성된 MFIS구조의 C-V 특성에서 memory window 폭은 0.9V를 보였으며 5V에서 4$\times$$10^{-7}$ A/$\textrm{cm}^2$의 누설전류밀도를 보였다.

  • PDF

Fabrication and Electrical Properties of PZT/BFO Multilayer Thin Films

  • Jo, Seo-Hyeon;Nam, Sung-Pil;Lee, Sung-Gap;Lee, Seung-Hwan;Lee, Young-Hie;Kim, Young-Gon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권5호
    • /
    • pp.193-196
    • /
    • 2011
  • Lead zirconate titanate (PZT)/ bismuth ferrite (BFO) multilayer thin films have been fabricated by the spin-coating method on Pt(200 nm)/Ti(10 nm)/$SiO_2$(100 nm)/p-Si(100) substrates using $BiFeO_3$ and $Pb(Zr_{0.52}Ti_{0.48})O_3$ metal alkoxide solutions. The PZT/BFO multilayer thin films show a uniform and void-free grain structure, and the grain size is smaller than that of PZT single films. The reason for this is assumed to be that the lower BFO layers play an important role as a nucleation site or seed layer for the formation of homogeneous and uniform upper PZT layers. The dielectric constant and dielectric losses decreased with increasing number of coatings, and the six-layer PZT/BFO thin film has good properties of 162 (dielectric constant) and 0.017 (dielectric losses) at 1 kHz. The remnant polarization and coercive field of three-layer PZT/BFO thin films were 13.86 ${\mu}C/cm^2$ and 37 kV/cm respectively.